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ABSTRACT

The ubiquity of mobile devices and cloud services has led to
an unprecedented growth of online personal photo and video
collections. Due to the scarcity of personal media search log
data, research to date has mainly focused on searching im-
ages and videos on the web. However, in order to manage
the exploding amount of personal photos and videos, we
raise a fundamental question: what are the differences and
similarities when users search their own photos versus the
photos on the web? To the best of our knowledge, this paper
is the first to study personal media search using large-scale
real-world search logs. We analyze different types of search
sessions mined from Flickr search logs and discover a num-
ber of interesting characteristics of personal media search in
terms of information needs and click behaviors. The insight-
ful observations will not only be instrumental in guiding fu-
ture personal media search methods, but also benefit related
tasks such as personal photo browsing and recommendation.
Our findings suggest there is a significant gap between per-
sonal queries and automatically detected concepts, which
is responsible for the low accuracy of many personal media
search queries. To bridge the gap, we propose the deep query
understanding model to learn a mapping from the personal
queries to the concepts in the clicked photos. Experimental
results verify the efficacy of the proposed method in im-
proving personal media search, where the proposed method
consistently outperforms baseline methods.
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1. INTRODUCTION
Personal photo and video data are being accumulated at

an unprecedented speed. For example, 14 petabyte of per-
sonal photos and videos were uploaded to Google Photo1 by
200 million users in 2015 [13], while tremendous amoun-
t of personal photos and videos are also being uploaded
to Flickr2 every day. With personal media3 now ubiqui-
tous online and given the added sentimental value such data
carry, searching them efficiently and effectively is becoming
increasingly important as user’s memories accumulate over
time. Personal media, stored in mobile devices or online
cloud, are becoming mirrors to one’s everyday life and past
memories, capturing significant or cherishable moments, e.g.
, wedding ceremonies or birthday parties.

With the speed that media gets created everyday, man-
ually annotating personal photo archives is practically in-
feasible. This is a situation comparable to the days in the
late 1990s, when people usually got lost in the rising sea of
web pages, now they are overwhelmed by the vast amounts
of personal media data but lack tools to find desired infor-
mation. In the absence of textual metadata, searching can
only be achieved via other automatically generated metada-
ta (e.g. timestamps and location provided by the recording
device). In recent years, deep learning based image classifi-
cation [30] has been employed for media auto-tagging; pho-
tos can automatically be annotated with generic concepts,
usually coming from ImageNet [41] and, mostly, focusing on
objects (e.g. dog, cat) or scenes (e.g. food, snow, beach).

Are, however, generic concepts what we are looking for
when delving into our memories? As previous research sug-
gested [10], users search their personal media differently
than web media or media coming from one’s social circle.
However, no previous studies examine such differences rigor-
ously and in real-world scale. To fill in this gap, this paper
conducts a real-world comparative study using the unique
data of Flickr, which allows search for media in users’ per-
sonal collection, social circle and multi-billion public media
collection on the entire website. With the blessing of Flick-
r data, we can compare the behaviors in personal search,
social search, and web search.

In this paper, we first conduct an in-depth analysis on
the Flickr search log data, consisting of 4.3 million queries
from more than 133,000 anonymized users. To the best of
our knowledge, our study is the first to analyze personal

1https://photos.google.com
2https://www.flickr.com
3In this paper, we use the term personal media to refer to
both personal photos and videos.
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media search using large-scale real-world search log data.
By analyzing multiple types of queries and exploring the
Flickr personal media repositories, we discover a number of
interesting characteristics of personal media search:

1. Personal query sessions are shorter, task-driven and
queries are more “visual” than the queries in social or
web search.

2. Users are interested in“4W queries”(what, who, where,
and when) in their personal media.

3. The majority (about 80%) of personal media have no
textual metadata and the percentage with tags is de-
creasing with time.

Our data analysis also demonstrates a significant gap be-
tween personal queries and generic concepts, i.e. a gap be-
tween a user’s information need and what can be retrieved by
the system. Traditional text-to-text matching approaches,
in which query words are matched against images’ metada-
ta, are bound to fail on personal media data as about 80%
personal media can only be searched via concepts. There-
fore this gap becomes a critical issue hindering the delivery
of accurate personal media search.

To bridge this gap, we propose novel approaches based on
deep query embedding networks that leverages clickthrough
data to learn end-to-end mappings directly from personal
queries to the automatic concepts. We propose both feed-
forward and Recurrent Neural Network (RNN) [15] archi-
tectures to examine the effectiveness of sequential modeling.
The proposed model implicitly models the complicated non-
linear relations in the visual domain. For example, a user
query “birthday party”might not retrieve any results simply
because “birthday party” is missing from our concept vocab-
ulary. However, our new approach can translate the query
to a set of relevant concepts that exist in the vocabulary,
such as “cake”, “candle”, “kids”, etc.

Our experimental results substantiate the efficacy of the
proposed models. Our approach consistently outperforms
baseline methods in terms of both mean average precision
and recall in a test set of over 150 thousand images. Using
the proposed models, we see a relative gain of up to 45% over
baseline methods in terms of the mean average precision. In
summary, our contribution is twofold:

• We conduct an in-depth analysis characterizing differ-
ences and similarities between personal media and oth-
er types of search.

• We propose a novel visual query embedding framework
to bridge the gap between personal queries and con-
cepts. By incorporating deep neural networks, our pro-
posed approach significantly outperforms every base-
line in our experiments on a large scale testing set.

We believe our observations may not only be instrumental
in guiding future personal media search, but also benefit
a variety of related tasks such as personal photo browsing,
recommendation, and question answering.

2. RELATED WORK
Although multimedia search has been recognized as an im-

portant problem [37], most of existing works focus on text
search [44, 10], and very few works focus on personal pho-
to or video search. In their seminal work [10], Dumais et
al. analyzed personal information retrieval and proposed
a system with a unified index for all available information

that exploits contextual cues in the search interface. In an-
other early approach [40], the authors proposed a browsing
interface tailored for personal media, that uses metadata
and basic content analysis. The same ingredients were used
by both Begeja et al. [2] and Pigeau [39] where they pro-
posed interactive approaches to assist people in organizing
and annotating their online personal collections. Utilizing
data from Flickr, Maniu et al. [34] were interested in dis-
covering behavioral patterns between queries issued in a we-
b multimedia search engine versus a social-sharing site and
proposed query-dependent models to improve ranking. Very
recently, Bentley et al. [3] used the Flickr personal search
log to measure the temporal consistency of tags. Although
extensive, their analysis and results focused only on tempo-
ral patterns of user tags. We are interested in understanding
how personal search differs from web search.

The problem of personal media search differs but also can
benefit from general web search. Especially, we are interest-
ed in analyzing the user behavior, which used to be captured
by the clickthrough data in web search. Clickthrough data
have been extensively applied for understanding the gap be-
tween query and search intent [16, 48, 7, 33, 6, 8]. In one of
the earliest approaches, Joachims et al. [26] exploited click-
through data from search logs to learn a ranking SVM for
optimizing document search quality. Jiang et al. [19] esti-
mated multi-level search satisfaction using Bing search logs
and proposed a regression model to predict graded satisfac-
tion. For media search, Jain and Varma [18] used Gaussian
Process regression to predict the normalized click count for
each result. Yu et al. [49] exploited clickthough data to
learn multimodal embeddings, whereas O’Hare et al. [38]
recently utilized interactions like mouse hovering as implic-
it relevance feedback together with clickthrough data in a
learning to rank framework. In this paper, we will use the
search log as well as the user clickthrough records, but with
the goal of understanding personal media search.

Several innovations were introduced, to modern image
search engines, on feature learning, image similarity, and
visualization [4, 20, 25, 27, 28, 46]. Most of them can be
applied to personal media search. However, the key prob-
lem of understanding user queries in personal search can be
different from that in web search.

The research of general web search also benefits from the
recent progress of modern word embeddings [35]. Very re-
cently, Grbovic et al. [14] used web query embeddings to-
gether with advertisement click logs to learn query expansion
in a distributed system for query to advertisement match-
ing. In a highly related work, Huang et al. [17] proposed
to learn latent semantic models between queries and docu-
ments using clickthrough data. We are interested in learning
an visual embedding from the queries to automatically gen-
erated concepts. We employ concepts as the visual informa-
tion proxy making the learning space significantly smaller.
More importantly, we are able to implicitly take into ac-
count the accuracy of each concept detector; for example,
even if a query exists as one of the concepts, the visual de-
tector for that concept might be weak. We may therefore
find other concepts to be equally or even more important
for ranking than that query concept itself and improve the
ranking of results. We compare against the approach of [17]
in Section 6. In some sense, the proposed deep query un-
derstanding model might also be the first zero-shot learning
approach that uses clickthrough data.



3. DATA
Table 1 summarizes the search log dataset used in our

study. We sampled the data from the search logs of the
Flickr search from October 2014 to October 2015. From the
raw query logs, we extracted the search sessions, and each
session contains a anonymized user identifier, query terms,
a time stamp, clicked photos/videos along with their ranks
and textual metadata in the search result. There are three
types of search in the query log: personal indicates the
queries users issued in searching their own photos; social
denotes the queries users used to search their friends’ pho-
tos; web indicates the queries searching for anyone’s pho-
tos on the entire public Flickr collection (billions of photos
and videos). We use the Flickr search to approximate web
search as the similar search interface and algorithm are used
in all web, personal and social search. In total, the dataset
contains 4.3 million queries from more than 133,000 users.
Flickr is desirable for this study for two reasons: first it is
one of the few large-scale websites that offers the person-
al media search functionality; more importantly, it incor-
porates different types of search that help distinguish the
characteristics of personal media search.

Table 1: Summary of Flickr 4M search log data
Type Queries Unique queries Unique photos

personal 961,826 339,349 820,784
social 560,086 268,183 489,770
web 2,783,525 1,147,386 2,282,881

Both query words and user tags are filtered by a text pre-
processing module, which removes the stop words, lemma-
tizes each word to its root forms and detects a word’s POS
(Part-of-Speech) tag. Each query is also parsed by a Named
Entity Recognizer [11] to extract person, organization and
place names. Besides, for each photo and video, we extract
5,000+ image and video concepts by our pre-trained detec-
tion models [12, 21, 22]. The concept vocabulary used in
our study may be so far one of the largest visual vocabulary.
The concepts were trained over tens of millions of images
and videos over several big dataset including ImageNet [30],
Google Sports 1M [29], YFCC100M [45], DIY [50], etc. In
summary, each photo and video in the dataset contains the
automatically detected concepts, and, if there is any, user
tags and descriptions.

We acknowledge the limitations of the data used in our
study. First, the retrieval algorithm used in all types of
queries relies on text-to-text matching which might not ex-
actly satisfy the underlying information need about personal
media. To reduce this bias, we count queries by the number
of unique users who issued them, and thus surface more glob-
al queries as opposed to user-specific particularities. Sec-
ond, the Flickr search interface itself has an influence on
the analysis results; personal search results are embedded
in the generic search interface in a prominent position and
therefore intentions can be less clear in some cases.

4. ANALYSIS

4.1 Query Words and User Tags
We start by examining the similarity of the personal, so-

cial and web queries. We observed that the query length dis-
tributions for different types of queries are similar, in which
the queries with less than 4 words account for more than
90% of the total queries. Besides, their POS distributions

are also similar in which the top 4 most frequent POS queries
are: noun, verb, adj-noun, and noun-noun.

Table 2: Statistics about personal media search.
Query Personal Social Web

Length (w/o stopwords) 1.5 1.8 2.0
Adult Word 0.5% 9.2% 6.8%
Visual 85.3% 60.9% 70.4%

Personal queries are more “visual”. A distinguishing
characteristic of personal search is that its queries are more
“visual”. A query is called visual if its information need is
about the visual content of the photo or video. For example,
“snow”, “flower” and “lake district” are visual queries where-
as “2014”, “NYC”, “social media”, “Nikon d3200” are not. In
order to detect visual queries, we map a POS-tagged query
to its closest synset in WordNet, i.e. a group of synonym
words in WordNet. A query is determined as visual if all of
its synsets can be found in the vocabularies of ImageNet [30]
and LabelMe [42], the two largest manually curated visual
vocabularies of more than 82,000 visual concepts. Our man-
ual analysis on random queries substantiates the coverage of
the two visual vocabularies is reasonable.

Table 2 shows 85.3% queries in personal search are visu-
al, which is 15% and 25% higher than that of the web and
social queries, respectively. The observation suggests that
when users search their own photos, they are more likely
to seek visually recognizable content. Since the majority of
personal media are not associated with user tags, our finding
substantiates the vital role of the automatic concept recog-
nition for personal photos and videos. Besides, we find the
personal queries contain significantly less adult words, where
the adult words are detected by matching to our dictionary.
The majority of personal media have no user tags
and the percentage with tags is decreasing. To es-
timate the statistics, we randomly sampled a collection of
about 200 million personal photos and videos from Flickr.
Fig. 1 illustrates the estimated percentage of media with user
tags and GPS information, where the x-axis represents the
year, and the error bar indicates the 95% confidence interval.
On average, 85% personal videos and 77% personal photos
do not have any user tag, and the percentage with tags is
declining over time probably because of the ever-increasing
personal media data. Interestingly, however, the percentage
with GPS information is increasing steadily.
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Figure 1: The estimated percentage of personal
media data with user tags and GPS information.

Users are interested in“4W queries” in their person-
al media. To understand the information need of the visu-
al queries, we categories them into “4W” categories, namely,
queries searching for what (object, thing, action, plant, etc.),
who (person, animal), where (scene, country, city, GPS) and



when (year, month, holiday, date, etc.). To this end, for the
synset in the visual query, we traverse the WordNet hierar-
chy to find its ancestor defined in the top-level synsets in
ImageNet and LabelMe. We then manually map the top-
level synsets to the 4W categories. For examples, the synset
“tree” will be matched to its ancestor synset “plant” which
belongs to the what category. Besides, the named entities
extracted from the query are also used to categorize where
and when queries.

Fig. 2 shows the comparison of 4W distributions. The
distribution of frequent user tags is also included for com-
parison. As we see, the total percentage of 4W queries is
much higher in personal queries. The overall distribution is
similar across web, social and personal queries but is notably
different from the distribution of user tags. The distribution-
al disparity suggests that users tag and search differently.
In tagging, the relative percentages of when and where are
higher. This may be because users are accustomed to tag
photos by time, place and activities, e.g. “2015 coney island
parade” or “fireworks in San Francisco”. On the contrary,
users search what and who more often. The distributions
in Fig. 2 might influence visual concept vocabulary learn-
ing [47, 5]. Besides, the high percentage of where in both
personal queries and user tags might justify the increased
GPS percentage in Fig. 1.
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Figure 2: Comparison of 4W categories of personal,
social, web queries, and frequent user tags.

4.2 Session Length
This subsection discusses the user click behavior in a search

session. Since the search space of the personal media is much
smaller than that of the web media, we select queries that
return at least 100 results to reduce the analysis bias. As
the Flickr search greatly relies on the text-to-text matching,
we observed a high matching ratio between the query words
and the metadata of the returned photos or videos, which is
88.0% for personal queries and 87.6% for web queries. The
ratios indicate that the text-to-text search results are gen-
erally relevant for both personal and web queries.
Personal query sessions are shorter. Fig. 3 illustrates
the log-log plot of the clicked position in the personal and
web query session, where the x-axis denotes the average
clicked position in the session, and y-axis represents the
percentage. As we see, personal query sessions are consider-
ably shorter than web query sessions in terms of the average
clicked position. In addition, the average number of clicks
in a personal query session, i.e. 1.57 ± 0.015, is also signifi-
cantly less than that of the web query session. The statistics
suggest that personal search receives fewer clicks and clicked
positions in a session are, on average, shallower. This ob-
servation may have several implications for personal media
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Figure 3: The log-log plot of average clicked position
in a session. The median clicked position is 2 for the
personal queries and 32 for web queries.

search as it further highlights the importance of the top 2-3
results. Algorithms and interfaces that optimize such results
are therefore more desirable.

After inspecting the representative sessions, we hypoth-
esize the underlying reason for the shorter session is that
users would ideally search their personal media in a task-
or question-driven manner. Our toy survey on 20 active
Flickr users substantiates this hypothesis, where the users
were asked for queries in an idealized personal media search
engine. What we found is the vast majority of queries are
either task-driven, e.g. “show me photos with my kid at the
playground a couple weeks ago” or in question format “what
was the hotel name in our trip to Greece?”. Interestingly, for
question-driven queries, users seem to be using media search
as a mean to recover pieces from their own memories, i.e.
looking for a specific name, place or date, e.g. “who did I
have dinner with in WSDM 2016?”. The results of this small
study suggest that in personal media search, users have clear
information need on what to find, either the photos in “show
me” queries or answers in question-driven queries, and thus
expect shorter search interactions.

4.3 Correlation Analysis
In this subsection we study the correlation between queries,

user tags and automatically detected concepts. To reduce
mistyped queries and user-specific query terms, we select
the 2,000 most frequent query words and user tags ranked
by the number of their occurrence in the search log dataset.
For concepts, we select a subset of about 4,500 common con-
cept detectors provided by Flickr [12].

We employ three metrics to evaluate the correlation, i.e.
the Jaccard, WordNet [36] and word2vec embedding [35]
similarities. Given two sets of words S1 and S2, we calculate
the Jaccard coefficient by the size of the intersection divided
by the size of the union of the sample sets. For the WordNet
and word2vec embedding [35], the correlation is given by:

κ(S1, S2) =
1

2|S1|

∑

wi∈S1

max
wj∈S2

κ(wi, wj), (1)

where κ(wi, wj) represents the generic similarity algorithm,
i.e. the WordNet shortest path similarity [31] or the cosine
word2ve similarity in the pre-trained embedding on Google
News. The final correlation is equal to κ(S1, S2) + κ(S2, S1).

The above metrics capture the correlation from differen-
t perspectives. Jaccard measures the proportion of exact-
ly matched words. WordNet captures the word similarity
in terms of the length of the shortest path that connects
the word senses in the is-a taxonomy, and therefore is good



at capturing synonyms and subsumption relations between
nouns. On the other hand, word2vec examines the latent
semantic relatedness of two words in a low-dimensional em-
bedding space. This metric is good at capturing the words
that co-occur frequently in similar contexts.

We present the correlations in Table 3. As we see, the
metrics seems to follow a similar pattern in which the corre-
lation between web & personal queries, and personal queries
& user tags is higher. On the contrary, the correlation be-
tween automatically detected concepts is about 20% lower.
The results suggest that there is a significant gap between
personal queries and automatically detected concepts, i.e.
a gap between a user’s information need and what can be
detected by the system. Given the fact that about 80% per-
sonal media can only be searched via such concepts, such a
gap harms performance in personal search. Our experimen-
tal results in Section 6 substantiate this argument.

Table 3: Correlation between personal query words,
user tags and concepts.
Type Jaccard WordNet Word2vec

personal & web 0.326 0.701 0.696
personal & tags 0.336 0.687 0.702
personal & concepts 0.197 0.528 0.542
tags & concepts 0.144 0.443 0.490

4.4 Summary of Findings
In this section, we analyzed the click logs and present sim-

ilarities and differences between personal and other types of
media search. We found that personal media queries are
more “visual” and have a higher percentage of correspon-
dence to the “4W” categories, i.e. what, who, when and
where. We estimated that about 80% personal photos and
videos do not have any user-generated tags, and this per-
centage increases over time. After analyzing clickthrough
data in sessions, we found personal media search to receive
significantly fewer clicks and the average clicked position is
shallower than web media search. We hypothesize that per-
sonal queries are usually task- or question-driven over seen
photos or videos, as opposed to the exploratory nature of
a large percentage of web media searches. Users have clear
information need on what to find, and thus expect shorter
search interactions. Finally, the correlation analysis between
personal queries and automatically detected concepts indi-
cates a significant gap between user information needs and
what can be retrieved by the current system.

5. DEEP QUERY UNDERSTANDING
To bridge the gap between personal query words and con-

cepts discussed in Section 4, in this section, we introduce
a new method, named Visual Query Embedding (VQE), to
improve the personal media search.

5.1 Problem Formulation
A concept corresponds to a visual recognition model that

estimates the probability of observing the concept in the
image or video content. There are two major differences
between the concepts in personal media and the words in
text documents. First, the concept vocabulary is much s-
maller than the word vocabulary, limited by the number
of objects, scenes or actions that can be accurately detect-
ed in the content of photos or videos. Scaling the num-
ber of concepts is nontrivial, as training detectors requires

considerable amount of labeled data which are expensive to
acquire [32]. Second, the accuracy of the automatically de-
tected concepts is limited: the detected concepts may not
actually be present whereas concepts not detected may well
appear in the content of personal media.

Due to such differences, there is a significant gap between
personal query words and concepts, i.e. a gap between a
user’s information need and what can be retrieved by the
system. To address this issue, we propose to learn Visu-
al Query Embedding (VQE) models that directly map user
query words to the related visual concepts. We propose to
address this problem through a novel perspective where end-
to-end embeddings are learned leveraging visually relevant
concepts discovered in the clickthrough data. Following [17],
we assume a query to be relevant, at least partially, to clicked
personal media data in that session. Our intuition is that for
the same query, concepts frequently occurring in the clicked
photos are more likely to be relevant. For example, if many
users clicks photos containing the concept “candles” for the
query “birthday party”, then “candles” is a concept that is
probably related to “birthday party”. Table 4 shows some
representative examples discovered form the search logs.

Table 4: Examples of user queries and visually rele-
vant concepts.

User queries Related Visual Concepts
jaguar → sports car, road
playa → coast, ocean

bluebell → flower, purple
tiger → carnivore, big cat, tiger

andromeda → empty, dreamlike, fire, bonfire
zoo → people, animal, primate, dog, monkey

We are interested in learning an end-to-end visual query
embedding function from the user query words to the rel-
evant visual concepts discovered in the clickthrough data.
Formally, let Q = q1, · · · , qn denote a query of n words,
where Q ∈ Z

n and each qi represents an integer index in
the query word vocabulary. Define a function φ : Z

n →
R

m, where R
m is a vector over the concept vocabulary of

m concepts. Denote yk as the relevant concepts extract-
ed from the search log for the query Qk. Based on the
above definitions, we can summarize the visual query em-
bedding problem as a supervised learning problem: φ =
argminφ

∑
k ℓ(φ(Qk),yk), where ℓ is the loss function.

In the online search phase, given a user query Qk, we
use φ to map it to a vector of relevant concepts, and apply
retrieval algorithms to obtain the relevant personal media.
In this paper, we employ the vector space (cosine) retrieval
model for simplicity, and refer readers to [23] for an analysis
on the impact of retrieval algorithms.

5.2 Visual Query Embedding Models
This subsection discusses two deep models for learning the

visual query embedding. First of all, we introduce a method
to extract visually relevant concepts in a search session. The
personal photos or videos are automatically tagged by m
concepts in V. Let d ∈ R

m represent the raw detection
scores, each dimension of which corresponds to the prob-
ability of detecting a concept. For a photo or video, d is
usually a dense vector. In other words, a photo contain-
s almost every concept in the vocabulary with a non-zero
detection score. We found learning φ based on the dense
raw score representation not only leads to worse results but
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Figure 4: Deep Visual Query Embedding Models.

also becomes infeasible for large-scale learning. To address
this issue, we incorporate the concept adjustment method
in [24], and represent personal media data by the adjusted
concept vector v ∈ R

m, given by:

argmin
v∈[0,1]m

1

2
‖v − d‖22 + α‖v‖1

subject to Av ≤ 0

, (2)

where α is the parameter that controls the sparsity. For
simplicity, we follow the algorithm in [24], use the l1-norm,
and set A to be the zero matrix as most of the concepts in
our experiments are independent.

In the kth session, let C+
k represent a set of adjusted con-

cept vectors in the clicked personal media. We define the
ground truth vector as the mean of the clicked concept vec-
tors, i.e. yk = 1/|C+

k |
∑

vi∈C
+

k

vi. Note that the click-

through data are very noisy [43], containing many queries
and clicks made by errors. We found the quality of the train-
ing set to greatly affect the accuracy the learned visual query
embedding. To reduce noise, we select queries issued by at
least 3 users, only consider clicks on the top 30 retrieved
results, and the concepts that occur in at least two clicked
photos in a session. Within a session, for each concept we
compute the mutual information in the set of clicked media
and a set of randomly sampled non-clicked media. A concept
with lower mutual information means it occurs, indiscrimi-
nately, in both clicked and non-clicked sets, and thus is likely
to be a background concept such as “outdoor” and “people”.
For training, we zero the background concepts with small
mutual information in the ground-truth vector y.

Given a training set of N sessions, let ŷi represent the
embedding output after the softmax activation function, i.e.
ŷk = softmax(φ(Qk)), the embedding is learned by mini-
mizing the cross-entropy loss function:

argmin
φ

N∑

i=1

ℓ(ŷi,yi)

= −
N∑

i=1

m∑

j=1

1(yij > 0) log ŷij + 1(yij = 0) log(1− ŷij)

(3)

where 1(·) is an indicator function equaling 1 when its ar-
gument is true, and 0 otherwise. Eq. (3) is also known as
softmax cross-entropy loss. In the rest of the section, we will
discuss two deep neural networks to learn the model.

5.2.1 Max-Pooled MLP

Our first model is the max-pooled Multi-Layer Percep-
tron (MLP), with architecture depicted in Fig. 4(a). It takes
query words and their Part-of-Speech (POS) tags as input,

and outputs the predicted concept vector. The model con-
sists of three types of layers: an embedding layer which map-
s a word or a POS tag to a low-dimensional vector; a max
pooling layer that computes the element-wise maximum for
the input vectors; a number of fully connected layer (fc) for
nonlinear transformation. Due to the disjoint vocabulary s-
pace, we learn separate embeddings Wword for query words
and Wpos for POS tags. Denote qi as the ith word and pi
as its POS tag in the query Q, the model with l layer is
calculated from:

a1 = max
qi,pi∈Q

(Wword(qi),Wpos(pi))

ai = σ(Wiai−1 + bi)

φ(Q) = relu(Wlal−1 + bl)

, (4)

where σ(x) = (1+ e−x)−1 is the sigmoid activation function
in the hidden layers, and relu is the rectified linear unit in
the last layer. Wi and bi represent the weight matrix and
the bias term vector in the ith layer; ai is the activation of
the ith layer, and φ(Q) is the predicted concept vector.

5.2.2 Two-channel RNN

The word sequence in a query is totally discarded by the
max-pooling layer in the previous model. To incorporate
the sequence information, we propose a two-channel RNN
model. As illustrated in Fig. 4(b), the embedding vectors of
the word and POS tags are fed into a two layer LSTM units
one by one, via two channels: [q1,· · · ,qn, $] and [p1,· · · ,pn, $],
where $ is a special token that marks the end of a sequence.
LSTM units are used to reduce the vanishing gradients and
exploding gradients problem [15]. More precisely, we use
the LSTM unit with dropout implementation described in
[51]. LSTM updates for time step t, given a word or pos
embedding vector as the inputs xt:

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi)

ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf )

ct = ftct−1 + it tanh(Wxcxt +Whcch−1 + bc)

ot = σ(Wxoxt +Whoht−1 +Wcoct + bo)

ht = ot tanh(ct)

(5)

where i, f ,o and c are respectively the input gate, forget
gate, output gate and memory cell activation vectors. All of
which are the same size of the hidden vector h.

The LSTM hidden states ht from the input sequences are
fed into an average pooling layer, as shown in Fig. 4(b). The
pooled hidden states are then fed to a set of fully connected
layers similar to those in Eq. (4). The final predicted concept
vector φ(Q) is derived from the output of the final fully
connected layer.



We incorporate the POS tags in our models for two con-
siderations: first, we found, though adding POS tags would
slow down the convergence, in some cases, it helps to find
better local minima. The second reason is for generalizabil-
ity. The proposed models can trivially degenerate to the
models without POS tags when tags are less informative.

6. EXPERIMENTS

6.1 Experimental Setup
Dataset and evaluation: We conduct our experiments
on the Flickr personal search log data. We select person-
al queries that were issued by at least 3 users, and divide
them into a training and a test set according to their issued
time. In total, the training set contains about 20,600 person-
al queries from 3,978 users, while the test set contains 2,443
queries from 1620 users over about 148,000 personal photos.
Given a personal query and a photo collection from a user,
our goal is to boost the rank for the user clicked photos. We
discard all user generated textual metadata that may ex-
ist in the user photos in our experiments, and only assume
that each photo is tagged with 1,720 automatically detected
concepts sampled from the Flickr concept bank [12].

We evaluate performance using two metrics: the non-
interpolated mean Average Precision (mAP) of the retrieved
ranked list and the concept recall of the top predicted con-
cepts denoted as CR@n. Let t represents the predicted con-
cepts φ(Q) after the top-n thresholding, i.e. all elements
except for the top n elements in φ(Q) are set to 0, we have:

CR@n(t,y) =
1

n

m∑

j=1

1(yiti > 0), (6)

where y is the ground-truth concept vector extracted in the
search session, and 1 is the indicator function. Note the
two metrics measures different aspects of the search results.
mAP evaluates the quality of the clicked photos ranked in
the search results, whereas CR@n measures the relevance
between the top-n predicted concepts and the true concepts
in the clicked photos. A relevant concept may not always
lead to a good ranked list as it might be less discriminative,
e.g. the relevant concept “carnivore” to the query “tiger”.
On the other hand, discriminative concepts leading to better
mAP may not always be relevant. Therefore, both metrics
are useful in understanding the performance of a method.
Compared Methods: We refer to the two Visual Query
Embedding (VQE) models discussed in Section 5, as VQE
(MaxMLP) and VQE (RNN). To demonstrate their per-
formance, we compare them against the following common
zero-shot learning and word embedding approaches: Exact
Match [23] is a plain mapping by matching the exact query
words to the concept names. Specifically, it produces a query
vector of the same size with the concept vocabulary, each di-
mension of which represents the similarity between the query
and the corresponding concept. The generated query vector
is then used to search relevant personal photos. Likewise,
WordNet computes similarities between query vectors and
concepts using WordNet path similarity [36] which is equal
to the shortest path in the WordNet taxonomy between the
query and the concept name [36]. SkipGram [35] learns an
embedding space over a large corpus of text documents. In
our experiments, the pretrained embedding on GoogleNews
is used to compute the query vector. Semantic DNN is in-
spired by the deep semantic structured model of [17], where

the authors proposed to learn a low-dimensional embedding
space form the query words to the words in the clicked text
documents by multilayer neural networks. In our problem
the vocabularies of query and concept are different, and as
a result, we add a layer on top of the last layer of the DNN
model in [17] to obtain the predicted concept vector. As
in [17], the cosine loss function is used to train the mod-
el. Note that only the VQE models and the semantic DNN
model use the clickthrough training data.
Implementation Details: We implement the proposed
VQE models in TensorFlow [1]. The model are trained over
mini-batches of 32 samples. The word and POS embeddings
are set to 300 dimensional vector and are learned jointly by
minimizing the loss in Eq. (3). The standard gradient decent
algorithm is used to train the MLP models, and the adap-
tive subgradient (Adagrad) [9] algorithm is used to train the
RNN models for faster convergence. The start learning rate
is set to 0.1 and is annealed by a staircase exponential decay
function with a decay rate of 0.96. A dropout layer is ap-
plied in training the RNN networks which discards 0.5% of
the input data. Each model is trained at most 7200 epochs
(no more than 24 hours).

6.2 Baseline Comparisons
We first compare the proposed methods with the base-

line methods in Table 5. As we see, the proposed VQE
MaxMLP significantly outperforms other baseline methods.
Specifically, it improves the mAP of SkipGram by about rel-
ative 45%. We inspected the search results and found that
MaxMLP can capture more visually relevant concepts for
personal media queries. Fig. 5 shows representative exam-
ples of the top search results for MaxMLP and SkipGram
models, where the photos in the green border are the user
clicked photos in the search session. As shown in Fig. 5(a),
MaxMLP retrieves more accurate personal photos. This is
because it maps the user query “paint ball” to visually rel-
evant concepts “solider” and “fatigues”, as opposed to the
concepts “archery” and “skateboarding” produced by Skip-
Gram. In addition, we found MaxMLP model can find rel-
evant concepts for “who” and “where” quires (see Fig. 2),
the two major categories in personal queries. For example,
as shown in Fig. 5(c), the MaxMLP model maps the user
query “key west”, i.e. a island city, to the concepts “wa-
ter” and “water sports”, whereas SkipGram fails to find any
relevant concept. Besides, experimental results also show
the domain difference between learning embedding on click-
through data versus learning embedding on text corpora like
Google News.

Although the proposed method shows promising results.
We admit that it is still significantly worse than traditional
text-to-text search over the photos or videos with rich user-
generated metadata. We believe the problem is novel, chal-
lenging, and needs further research [23]. We found the lack
of common sense often results in inaccurate mappings in the
VQE (MaxMLP) model. For example, the user query “bus”
is mapped to “tramline” by the VQE model even though
there exists a “bus” concept in the vocabulary. This problem
may be addressed by either incorporating prior knowledge
in training or by increasing the size of the training data. Be-
sides, the worse performance of Semantic DNN model might
stem from the less appropriate loss function. See Section 6.3
for more discussions.

The proposed VQE (RNN) model yields better CR@1 and



Ours Word2Vec

(a) Paintball

Ours Word2Vec

(b) Cross

Ours Word2Vec

(c) Key west

Ours Word2Vec

(d) Ford

Figure 5: Examples of top search results of personal photos. The left ranked list indicates our results and
the right list is from the SkipGram (word2vec). The user query is listed in the subtitle, and the photos in
the green border are the user clicked photos.

CR@3 but worse mAP than the baseline SkipGram method,
suggesting that the RNN model can find relevant but less
discriminative concepts. We found two reasons explaining
the worse performance of VQE (RNN) when compared to
the VQE (MaxMLP) model: first the worse results suggest
the word sequence in personal queries is less informative.
It is acknowledged that the sequence of text query word-
s plays a less important role in the bag-of-word or unigram
language retrieval model [52]. Our experimental results sug-
gest this may still hold in personal media search. Second,
the RNN model converges much slower than the MaxMLP
model. When we stopped the training for the RNN model
after 24 hours, its performance is still worse than that of the
MaxMLP model.

Table 5: Comparison to baseline methods.
Method mAP CR@1 CR@3 CR@5

Exact Match [23] 0.231 0.209 0.086 0.067
WordNet [36] 0.269 0.298 0.195 0.161
SkipGram [35] 0.271 0.286 0.194 0.173
Semantic DNN [17] 0.120 0.010 0.018 0.018
VQE (RNN) 0.235 0.377 0.238 0.167
VQE (MaxMLP) 0.390 0.524 0.374 0.289

6.3 Model Parameters
In this section, we study the impact of parameters in the

proposed VQE models. First we empirically compare neu-
ral network structures. Table 6 lists different neural net-
work structures of VQE models, where embedding layers
and polling layers are omitted to save space. The detailed
model for MaxMLP and RNNmodel can be found in Eq. (4),
Eq. (5), and Fig. 4. For example, the third row MaxMLP4
represents a 4-layer network containing an embedding layer,
a pooling layer, a fully connected layer fc1, transforming
a 300d max-polled vector to a hidden layer of 300d by the
sigmoid function, and an output layer fc2, transforming the
300d hidden vector to a output vector of 1720d by the rec-
tified linear unit. The fifth row MeanMLP4 represents the
same network as MaxMLP5 except that it employs the mean
instead of the max polling layer .

We observed two trends in Table 6. First the performance
increases as models get deeper. This observation suggest-
s the visual query embedding for personal media can be
highly nonlinear, and deeper models may better capture the
underlying relation between user query words and relevan-
t concepts. For example, the 5-layer MaxMLP5 achieves

better mAP than the 4-layer MaxMLP4. However, in fact,
MaxMLP5 has fewer parameters than MaxMLP4. Second,
we found the max polling in the MaxMLP model leads to
not only faster convergence but also more accurate search
results. For example, MaxMLP5 outperforms MeanMLP5
suggesting the efficacy of the max-polling layer.

Table 6: Comparison of network structures.
Model Network Structure mAP CR@3

MaxMLP3 fc1: relu(300 → 1720) 0.225 0.314

MaxMLP4 fc1: sigmoid(300 → 300) 0.367 0.301
fc2: relu(300 → 1720)

MaxMLP5
fc1: sigmoid(300 →200)

0.390 0.374fc2: sigmoid(200 →200)
fc3: relu(200 →1720)

MeanMLP5 Same as above. 0.249 0.202

RNN3 lstm1 lstm:(300 → 200)
0.124 0.025

fc1: relu(200 → 1720)

RNN6

lstm1 lstm:(300 → 200)

0.235 0.238
lstm2 lstm:(200 → 200)
fc1: sigmoid(200 → 200)
fc2: sigmoid(200 → 200)
fc3: relu(200 → 1720)

The loss function is an important component in neural
network training. The softmax cross-entropy loss discussed
in Eq. (3) represents a type of loss that jointly models con-
cepts as a sparse vector due to the softmax transformation.
Alternatively, we can use the cross-entropy loss, which ig-
nores the sparse constraint, or the cosine loss, which mea-
sures the distance between queries and concepts seen as
dense vectors. Our goal is to find which type of loss is suit-
able for VQE learning. Table 7 lists the mAP performance.
As we see, the cosine loss yields the worst results suggesting
treating concepts as dense vectors in the high dimensional
space is less appropriate in our problem. This may explain
the worse performance of Semantic DNN in Table 5. Besides,
the comparison between the cross-entropy and the softmax
cross-entropy suggests jointly modeling concepts as a sparse
representation is helpful.

Table 7: mAP for different loss functions.
Loss Function MLP RNN

Softmax cross-entropy 0.390 0.235
Cross-entropy 0.187 0.145
Cosine distance 0.124 0.130



7. CONCLUSIONS
In this paper we investigated personal media search using

clickthrough data on a large-scale, real-world set. We an-
alyzed different types of search sessions mined from Flickr
search logs and discovered a number of interesting attributes
of personal media search. We found personal queries to be
more visual and task- or question-oriented, aiming visual se-
mantics in a small collection of media, the majority of which
have no tags or descriptions.

We further found that automatically generated concepts,
one of the very few options for searching in the absence of
other textual metadata, cannot properly capture the user
intent in personal search. Inspired by our findings, we pro-
posed novel models for learning visual query embeddings
between user queries and concepts and achieved high gains
in search performance over existing baselines methods.

To our knowledge, this paper is the first to study the na-
ture of personal search using a large amount of real-world
data and gives insightful observations that enable us to learn
novel deep visual query embeddings that can improve search
performance. However, the proposed model is still signifi-
cantly worse than the traditional text search over the photos
or videos with rich user-generated metadata. We believe the
problem is novel, challenging, and needs further research.
Besides, the insights from our analysis further show that
question-based search is a very important aspect of personal
search. We believe that further research on question answer-
ing over personal media is needed, and we expect this to be
a promising and fruitful direction.
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