

NAVER LABS

...a short tutorial on

Image Representations and Fine-Grained Recognition

Yannis Kalantidis

Research Scientist NAVER LABS Europe

Virtual talk @ HUST 17th May 2021

Personal webpage: https://www.skamalas.com

https://www.skamalas.com/#hust

- Prerequisites: basic knowledge of math and linear algebra
 - What is a vector and a dot product?
 - What are matrices and their basic operations?
 - How is an image represented in the computer?

- Prerequisites: basic knowledge of math and linear algebra
 - What is a vector and a dot product?
 - What are matrices and their basic operations?
 - How is an image represented in the computer?
- Things we will talk about
 - Why do we need representations?
 - What is "deep learning" and why is it "deep"?
 - What are Convolutions and the famous Convolutional Neural networks?

- Prerequisites: basic knowledge of math and linear algebra
 - What is a vector and a dot product?
 - What are matrices and their basic operations?
 - How is an image represented in the computer?
- Things we will talk about
 - Why do we need representations?
 - What is "deep learning" and why is it "deep"?
 - What are Convolutions and the famous Convolutional Neural networks?
- Things we won't have time to talk about
 - Lots of details on methods/implementation
 - Many many other important things that I foolishly forgot, so:

- Prerequisites: basic knowledge of math and linear algebra
 - What is a vector and a dot product?
 - What are matrices and their basic operations?
 - How is an image represented in the computer?
- Things we will talk about
 - Why do we need representations?
 - What is "deep learning" and why is it "deep"?
 - What are Convolutions and the famous Convolutional Neural networks?
- Things we won't have time to talk about
 - Lots of details on methods/implementation
 - Many many other important things that I foolishly forgot, so:

Please interrupt and ask many many questions

The goal of this lecture

Leave the lecture knowing:

- Why should we *learn* representations instead of hand-craft them?
- How does a convolutional neural network (CNN) work?
- How do I train a CNN?

The materials (slides) for this lecture:

- Are highly experimental and practically untested
- Try to cover a lot of material, going from basics to details in places
- We are <u>not</u> meant to go over all of it, **you** will set the pace

The goal of this lecture

Leave the lecture knowing:

- Why should we *learn* representations instead of hand-craft them?
- How does a convolutional neural network (CNN) work?
- How do I train a CNN?

The materials (slides) for this lecture:

- Are highly experimental and practically untested
- Try to cover a lot of material, going from basics to details in places
- We are <u>not</u> meant to go over all of it, **you** will set the pace

with your questions ;)

About Yannis

- Grew up in Athens, Greece
- 2009 2014: PhD in Athens, Greece
 - at the National Technical University of Athens
 - PhD supervised by <u>Yannis Avrithis</u>
 - Internships at
 - Yahoo Research Barcelona
 - Yahoo Research San Francisco (two times!)
- 2015 2017: Researcher at Yahoo Research (SF)
- 2017 2019: Researcher at Facebook AI (MPK)
- 2020- now: Researcher at NAVER LABS Europe

Overview

- Introduction
 - What is a "representation"?
 - Extracting vs. Learning Representations
- Convolutional Neural Networks (CNNs)
 - Basic components and architectures
 - Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets

Overview

• Introduction

- What is a "representation"?
- Extracting vs. Learning Representations
- Convolutional Neural Networks (CNNs)
 - Basic components and architectures
 - Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets

What is a "representation"?

"Representation" of a complex input datapoint (eg an image) is a **compact** set of information for that point that is useful for solving real-world tasks

- semantic
 - what objects/relations appear
 - how they are connected
- abstract
 - a high-dimensional vector
 - a graph of high dimensional vectors

What is an image representation?

in Computer Vision

(usually) a **compact** vector that describes the visual content of an image

A **global** image representation

• a high-dimensional vector

What is an image representation?

in Computer Vision

(usually) a *compact* vector that describes the visual content of an image

A **global** image representation

• a high-dimensional vector

But can also be **multiple** *local* features

- a histogram of edges or gradients
- a set of regions of interest and their features

What is a "representation"?

"Representation" or "feature" in Machine Learning:

(usually) a *compact* vector that describes the input data

$$x = [x^1, \dots, x^d], x \in \mathbb{R}^d$$

Comparing visual representations

• Measure similarity/distance between images. Let $x_i, x_j \in \mathbb{R}^d$

$$d(x_i, x_j) = \|x_i - x_j\|^2$$

=
$$\sum_{k=1}^d (x_i^k - x_j^k)^2$$

What are visual representations useful for?

Classification

• Given a set of classes/labels and an unseen image, classify the image

Detection/Segmentation

• Use multiple features, usually from a set of regions

Video understanding

• Tracking and spatio-temporal localization

Cross-modal search and generation

• Image captioning and description

Image Classification

• Given a set of classes/labels and an unseen image, classify the image

Image Classification

We need to:

- have a way of getting representations for each image
- learn a *classifier* on top of the representations

$$f(x_i; W) = W x_i$$

Image Classification - what classes?

- Object categories (eg ImageNet)
- <u>Snake species</u> [1]
- Crops from space [2]
- <u>Cassava leaf diseases</u> [3]

We need to learn a *classifier* on top of the representations

$$f(x_i; W) = W x_i$$

[1] Snake species classification challenge
[2] Farm Pin Crop Detection Challenge @ zindi.africa
[3] iCassava Challenge 2019

Image Classification: iCassava

iCassava 2019 Fine-Grained Visual Categorization Challenge

Ernest Mwebaze, Timnit Gebru, Andrea Frome Google Research [emwebaze,tgebru, afrome]@google.com Solomon Nsumba, Jeremy Tusubira Artificial Intelligence lab Makerere University [snsumba, jtusubira]@gmail.com

Chris Omongo National Crops Resources Research Institute P.O. Box 7084 Kampala, Uganda. chrisomongo@gmail.com

(a) Background effects

(b) Time of day effects

(c) Multiple disease

(d) Poor focus effects

Paper: https://arxiv.org/pdf/1908.02900.pdf

FGVC8

The Eight Workshop on Fine-Grained Visual Categorization

June 25th 2021

Organized in conjunction with CVPR 2021

10,000 species, with a training dataset of 2.7M images

NYYBG New YORK BOTANICAL GARDEN

2.5M images representing nearly 66,000 species from the Americas, Oceania and the Pacific.

Workshop webpage: https://sites.google.com/view/fgvc8/home

Any datasets from Vietnam??

Vietnamese Foods

More than 24.000 images of 29 Vietnamese foods with urls

Quan Dang • updated 2 months ago

Note that I do not endorse this dataset. ...it was just the only one I found :)

https://www.kaggle.com/quandang/vietnamese-foods

6

Recognition

Image

vision features

Feature Extraction:

"hand-crafted" representations

- Utilizes domain knowledge
- Requires domain expertise
- Most common approach for decades

Representation Learning

- Don't design features
- Design *models* that output representations and predictions
- Don't tell the model how to solve your task; tell the model what result you want to get

Representation Learning

- Collect a dataset of images and labels
- 2) Use machine learning to train a model and classifier
- 3) Evaluate on new images

Learning Image Representations

Dataset

- Images
- Labels/Annotations

airplane	1	Nr.	-	X	*	*	2	and the second s
automobile					-	Tel		
bird	S	ſ	T			-	1	1
cat			4	50		12	E.	Å
deer	4	48	X	RA		Y	Ŷ	1
dog	376	1	-		1	(C)e	9	V
frog	.2	1	-		2		and the second s	5
horse	phys	-	A	7	3	ICAL	13	7
ship	-		distr	-	MA	-	2	12
truck	ALL N		1				And I	

[CIFAR10 dataset]

Learning Image Representations

Model

- Use dataset to learn the parameters of a **model** that gives you a representation and a **classifier**
- Given the model and classifier, predict the label for a new image

Which model to use?

Deep Convolutional Neural Networks

Learning Image Representations

Why is it better to learn representations?

- No need to "invent" new features or to study the data for hand-crafting priors
- Get better with more data
- Works much better in practice (a revolution in CV)
- Representations learned via deep learning "generalize" surprisingly well:

it is possible to learn "general purpose" representations that can be used at many tasks beyond the one they were trained on!

Learning general-purpose representations

2005: PASCAL VOC (4 classes)

• 2006: PASCAL VOC (10 classes)

2007: PASCAL VOC (20 classes)

2005: PASCAL VOC (4 classes)

2006: PASCAL VOC (10 classes)

2007: PASCAL VOC (20 classes)

2009: ImageNet (thousands of classes)

Collect annotations for concepts from the WordNet taxonomy

Prof. Fei-Fei Li

2005: PASCAL VOC (4 classes)

2006: PASCAL VOC (10 classes)

- 2007: PASCAL VOC (20 classes)
 - 2009: ImageNet

2011: **ImageNet-21K** (21,000 classes, 14M+ images)

Large annotated image collections

 Train deep Convolutional Neural Networks (CNN)

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. (CVPR), 2009.

Large annotated image collections

- Train deep Convolutional Neural Networks (CNN)
- Benchmark progress

O Russakovsky, J Deng, et al. **Imagenet large scale visual recognition challenge**, IJCV, 2015. Graph from <u>https://paperswithcode.com/sota/image-classification-on-imagenet</u>

O Russakovsky, J Deng, et al. **Imagenet large scale visual recognition challenge**, IJCV, 2015. Graph from <u>https://paperswithcode.com/sota/image-classification-on-imagenet</u>

Overview

- Introduction
 - What is a "representation"?
 - Extracting vs. Learning Representations

• Convolutional Neural Networks (CNNs)

- Basic components and architectures
- Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets
Convolutional Neural Networks (CNNs)

Why "Deep" Networks?

- Inspiration from mammal brains
 - [Rumelhart et al 1986]
- Train each layer with the representations of the previous layer to learn a higher level abstraction
- Pixels → Edges → Contours →

Object parts → Object categories

• Local Features → Global Features

Data/Input representation: Pixel intensities

Data/Input representation: Pixel intensities

RGB data **tensor**

Convolutional Neural Networks (CNNs)

Basic components:

- Fully Connected layer
- Convolutions
- Activation Functions (non-linearities)
- Subsampling/Pooling
- Residual Connections

Fully Connected Layer

e.g. a 32x32x3 image → stretch to 3072 x1 (spatial structure is lost)

Fully Connected Layer

activation map

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3x3 filter

=> 5x5 output

Convolution Layer - stride

Ν

Output size: (N - F) / stride + 1

Convolution Layer - stride

shrinking too fast!

Convolution Layer - padding

- input 7x7
- 3x3 filter
- stride = 1
- pad with 1 pixel border

what is the output?

Convolution Layer - padding

- input 7x7
- 3x3 filter
- stride = 1
- pad with 1 pixel border
- 7x7 output
- It is common to see conv layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially)

Activation Function: ReLU

Leaky ReLU $\max(0.1x, x)$

 $\begin{array}{l} \textbf{Maxout} \\ \max(w_1^T x + b_1, w_2^T x + b_2) \end{array}$

Pooling Layer

- Subsampling/downsampling
- operates on each activation map independently
- Typical pooling functions:
 - o max
 - average

Pooling Layer: Max pooling

Putting it all together

Residual Connections [He et al. 2016]

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

ResNet [He et al. 2016]

Simple but deep design:

- all 3 x 3 conv
- spatial size / 2 ⇒ # filters x 2 (same complexity per layer)
- Global Average Pooling (GAP)

ResNet [He et al. 2016]

ImageNet Classification top-5 error (%)

PASCAL VOC 2007 Object Detection mAP (%)

import torch

model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True)

or any of these variants

model = torch.hub.load('pytorch/vision', 'resnet34', pretrained=True)

model = torch.hub.load('pytorch/vision', 'resnet50', pretrained=True)

model = torch.hub.load('pytorch/vision', 'resnet101', pretrained=True)

model = torch.hub.load('pytorch/vision', 'resnet152', pretrained=True)
model.eval()

'resnet34', pretrained=True)
'resnet50', pretrained=True)
'resnet101', pretrained=True)
'resnet152', pretrained=True)

Download an example image from the pytorch website import urllib url, filename = ("https://github.com/pytorch/hub/raw/master/dog.jpg", "dog.jpg") try: urllib.URLopener().retrieve(url, filename) except: urllib.request.urlretrieve(url, filename)

```
# sample execution (requires torchvision)
from PIL import Image
from torchvision import transforms
input_image = Image.open(filename)
preprocess = transforms.Compose([
    transforms.Resize(256),
    transforms.CenterCrop(224),
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
1)
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
```

```
# move the input and model to GPU for speed if available
```

```
if torch.cuda.is_available():
```

```
input_batch = input_batch.to('cuda')
model.to('cuda')
```

```
with torch.no_grad():
```

```
output = model(input_batch)
```

Tensor of shape 1000, with confidence scores over Imagenet's 1000 classes
print(output[0])

The output has unnormalized scores. To get probabilities, you can run a softmax on it.
print(torch.nn.functional.softmax(output[0], dim=0))

Recent advances on (hand-crafted) Convolutional Neural Network architectures (*incomplete and biased list warning)

- <u>ResNeXt</u> [CVPR 2017]
- Inception-v4 [AAAI 2017]
- <u>Squeeze-Excitation Nets</u> [CVPR 2018]
- Non-Local Networks [CVPR 2018]
- EfficientNet [ICML 2019]
- <u>Global Reasoning Networks</u> [CVPR 2019]
- Octave Convolutions [ICCV 2019]

all the approaches above come with open-source code and models

https://paperswithcode.com/

Recent advances in CNN architectures

Neural Architecture Search

- AutoML NeurIPS 2018 Tutorial [U. Freiburg, U. Eindhoven]
- Neural Architecture Search with Reinforcement Learning [Google]
- <u>NAS state-of-the-art overview</u> [Microsoft]
Recent advances on visual representation learning architectures (*incomplete and biased list warning)

- Transformer-based models (2020-2021)
 <u>VIT</u>, <u>T2t-VIT</u>, <u>BIT</u>, <u>DeIT</u>, <u>LeVIT</u>, and many more
- MLP-based models (May(!) 2021)
 - eg <u>MLP-Mixer</u> and ...2-3 more the last week

Again, all approaches above come with open-source code and models

Overview

- Introduction
 - What is a "representation"?
 - Extracting vs. Learning Representations
- Convolutional Neural Networks (CNNs)
 - Basic components and architectures
 - Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets

(Mini-batch) Stochastic Gradient Descent (SGD)

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the model
- 3. Calculate loss function
- 4. Backprop to calculate the gradients
- 5. Update the parameters using the gradient

Loss function

Cross entropy loss $L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$

Data loss: Model predictions should match training data

Regularization: Prevent the model from doing *too* well on training data

(most commonly used) Optimizer

• Stochastic Gradient Descent (SGD) with momentum

$$v_t = \mu v_{t-1} + (1 - \mu) \nabla_W L$$
$$W' = W - v_t$$

Combine gradient at current point with velocity to get step used to update weights

NT

Regularization

 λ = regularization strength (hyperparameter)

$$L(W) = \frac{1}{N} \sum_{i=1}^{N} L_i(f(x_i, W), y_i) + \lambda R(W)$$

Data loss: Model predictions should match training data

Simple examples

L2 regularization: $R(W) = \sum_k \sum_l W_{k,l}^2$

a.k.a. Weight decay (see also <u>[Zhang *et al*. ICLR 2019]</u>) **Regularization**: Prevent the model from doing *too* well on training data

More complex:

Dropout Batch normalization Stochastic depth, fractional pooling, etc

Learning Rate (LR)

• Which LR to use? a) Start large and decay; b) use warm-up.

Slide Credits: Li, Johnson & Yeung, Stanford 2019

- Batch Normalization [loffe & Szegedy 2015]
 - make each dimension zero-mean unit-variance
 - also <u>LayerNorm</u>, <u>GroupNorm</u>, and others

 $\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathbf{E}[x^{(k)}]}}$

- Data preprocessing
 - Subtract per-channel mean and divide by per-channel std dev.

- Data preprocessing
 - Subtract per-channel mean and divide by per-channel std dev.
- Data Augmentation

Transform image

- Data preprocessing
 - Subtract per-channel mean and divide by per-channel std dev.
- Data Augmentation
 - o <u>Auto Augment</u>
 - o <u>Mixup</u>
 - Training: Train on random blends of images
 - Testing: Use Original images

Target label: cat: 0.4 dog: 0.6

CNN

Randomly blend the pixels of pairs of training images, e.g. 40% cat, 60% dog

- Data preprocessing
 - Subtract per-channel mean and divide by per-channel std dev.
- Data Augmentation
 - <u>Auto Augment</u>
 - o <u>Mixup</u>
- Weight initialization
 - MSRA init (for ReLU nets): rand * sqrt($2/d_{in}$)
 - <u>Lottery ticket hypothesis</u> [ICLR 2018]
 - <u>Deconstructing Lottery Ticket Hypothesis</u> [ICLR 2019]

Overview

- Introduction
 - What is a "representation"?
 - Extracting vs. Learning Representations
- Convolutional Neural Networks (CNNs)
 - Basic components and architectures
 - Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets

Fine-grained Recognition

Image Classification + Challenges

- Small inter-class variance
- Large intra-class variance

Plus possibly:

- Fewer data overall per class
- Large number of classes
- Imbalanced data per class

(Coarse-grained)

Fine-grained image recognition

8th Fine-Grained Visual Categorization (FGVC) Workshop at CVPR 2021

More realistic competitions:

- iNaturalist challenge
- fashion
- products
- wildlife camera traps
- cultural items

Fine-Grained Recognition in two steps

- 1) Start from a state-of-the-art (possible pre-trained) model
- 2) Fine-tune depending on amount of available data & compute

Note: Lots of paper are lately proposing architectures, regularizations and tweaks specific for fine-grained recognition; the above recipe, however, if training is done "the right way", can empirically give results almost as good as the best of those.

Start from a state-of-the-art model

- Pick one of the best models wrt your resources
 - small: Mobilenet, ShuffleNet, EfficientNet, etc
 - medium: (SE-)/(Oct-)ResNe(X)t50, etc
 - large: SENet-154, Inception-v4, (SE-)/(Oct-)ResNe(X)t-152, etc
- Start from a model pre-trained on a large dataset
 - Pre-train dataset as close to the target domain as possible [Ciu et al CVPR 2018]
 - Lots of publicly available models!
 - Check the github pages of the latest architectures
 - Models after training from 1 Billion images from FB

Pre-trained vs train from scratch

• **Train** a model *from scratch* with the data

• Fine-tune a pre-trained model

Expected performance

• Utilize representations learned from a pre-trained model

Higher l ower

Pre-trained vs train from scratch

• **Train** a model *from scratch* with the data

• Fine-tune a pre-trained model

• Utilize representations learned from a pre-trained model

Fine-tune the model

How much data/computing power do you have?

• Lots

- Consider training from scratch
- Fine-tune the full model with a lower learning rate

• Moderate

- Fine-tune the last few layers of the model with a lower learning rate
- Small
 - Train only the classifier
 - consider a 1-NN classifier! (surprisingly competitive, no training needed)

Best practices for fine-grained recognition

- Utilize all the "general" best practices
 - Data Preprocessing
 - Data Augmentation
 - Carefully tune Weight decay, Learning Rate and schedule
 - Also possibly helpful: Label smoothing, Test-time augmentation
- Utilize any extra domain knowledge (eg part annotations)
- Utilize unlabeled data from the target domain if available (semi-supervised learning)

Dealing with small datasets or small inter-class variance

- Data augmentation is highly important
 - o auto augment, mixup, manifold-mixup, generate/hallucinate new data,
- Feature normalization is highly important
 - try L2-norm, centering, PCA
- Test-time augmentations
 - multiple crops
 - Multi-resolution testing, model ensembles
- Train and test image resolution is very important
 - [Cui et al. CVPR 2018], [Touvron et al 2019]

Many tricks in the [FGVC6 iNaturalist 2019 challenge winner slides]

Dealing with small datasets or small inter-class variance

- Weakly Supervised Localization with CAM
 - [Zhou et al. CVPR 2016]
- Attention-based architectures
 - [Fu et al. CVPR 2017], [Zheng et al. CVPR 2019]
 - simplest case: post-hoc add and learn an attention layer before the global average pooling
- GAP → Generalized mean pooling (GeM)
 - Radenovic et al PAMI 2018]
- Regularizers for multi-scale learning
 - [Luo et al. ICCV 2019]

Dealing with imbalanced data ("long-tailed recognition")

- Label-Distribution-Aware Margin Loss
 [Cao et al., NeurIPS 2019]
- Class-balanced loss [Cui et al. CVPR 2019]
- Decouple representation from classifier learning [Kang et al. ICLR 2020]
 - Learn representation without caring about imbalance, fine-tune using uniform sampling
 - ...or just re-balance the classifier

Method	ResNet-50	ResNet-152
CB-Focal†	61.1	-
LDAM†	64.6	-
LDAM+DRW†	68.0	-
Joint	61.7/65.8	65.0/69.0
NCM	58.2/63.1	61.9/67.3
cRT	65.2/67.6	68.5/71.2
τ -normalized	65.6/ 69.3	68.8/ 72.5

results on iNaturalist 2018 (8k species, long-tail)

Summary

- Introduction
 - What is a "representation"?
 - Extracting vs. Learning Representations
- Convolutional Neural Networks (CNNs)
 - Basic components and architectures
 - Pytorch example
- Training Convolutional Neural Networks
 - Loss function and regularization
 - Important tips for training image models
- Fine-grained recognition
 - Best practices for fine-grained Recognition
 - Tackling small and imbalanced datasets

Resources

- All pytorch tutorials: <u>https://pytorch.org/tutorials/</u>
- Tutorials on image classification, transfer learning and fine-tuning
- Pre-trained models to start from:
 - ImageNet + iNaturalist pre-trained models (tensorflow) [Ciu et al CVPR 2018]
 - Models trained on ~1 Billion images from IG hashtags from Facebook:
 - WSL-Images models (pytorch) [Mahajan et al CVPR 2018]
 - SSL/ SWSL models (pytorch) new! [Yalniz et al 2019]
- Great resource for going deeper (with video lectures): <u>Stanford CS231n</u>

https://europe.naverlabs.com