

NAVER LABS Europe

Hard negative mixing for contrastive learning

Yannis Kalantidis Mert Bulent Sariyildiz Noé Pion Philippe Weinzaepfel Diane Larlus

> Project page https://europe.naverlabs.com/mochi

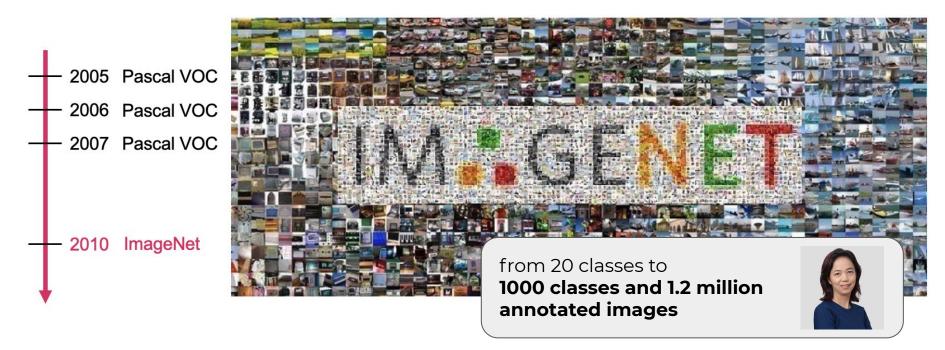
Overview

- Introduction
- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- Understanding the feature space

Overview

Introduction

- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- Understanding the feature space


About Yannis

- Grew up in Athens, Greece
- 2009 2014: PhD in Athens, Greece
 - at the National Technical University of Athens
 - PhD supervised by <u>Yannis Avrithis</u>
 - Internships at
 - Yahoo Research Barcelona
 - Yahoo Research San Francisco (two times!)
- 2015 2017: Researcher at Yahoo Research (SF)
- 2017 2019: Researcher at Facebook AI (MPK)
- 2020- now: Researcher at NAVER LABS Europe

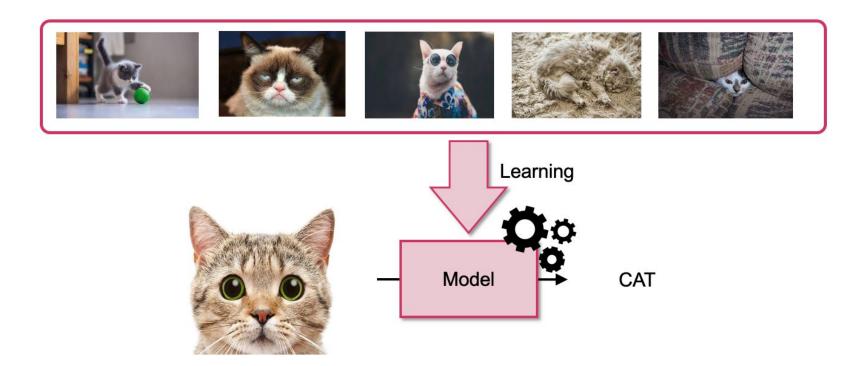
Computer vision over the last decade

Large image collections to train deep Convolutional Neural Networks (CNN)

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, ImageNet: A Large-Scale Hierarchical Image Database. (CVPR), 2009. pdf

Computer vision over the last decade

From hand-crafted to learned visual representations


Computer Vision + Machine Learning =

Visual Representation Learning

Representation Learning

- Don't design features
- Design *models* that output representations and predictions
- Don't tell the model how to solve your task; tell the model what result you want to get

Image Classification

Image Classification

Given a (large) dataset of images and corresponding labels:

- 1. Learn visual representations
- 2. Learn a *classifier* on top of the representations

$$f(x_i; W) = W x_i$$

They two can be learned together (end-to-end)

Image Classification

Given **a (large) dataset** of images and **corresponding labels**:

- 1. Learn visual representations
- 2. Learn a *classifier* on top of the representations

$$f(x_i; W) = W x_i$$

They two can be learned together (end-to-end)

The annotation bottleneck

Can we learn "reusable" / "general-purpose" visual representations...

... and use/*transfer* them for other tasks and datasets?

The annotation bottleneck

Can we learn "reusable" / "general-purpose" visual representations...

... and use/*transfer* them for other tasks and datasets?

Yes!

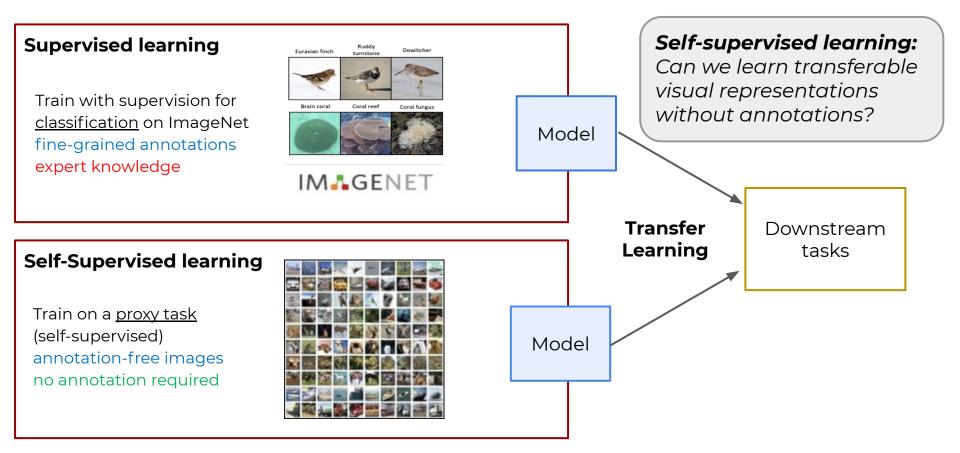
- Pretrained models have boosted performance on many tasks
- We can pretrain with large weakly annotated datasets
- Big gains for smaller target datasets

Razavian et al. CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRw 2014. Mahajan, et al. "Exploring the limits of weakly supervised pretraining." ECCV 2018. Yalniz et al. Billion-scale semi-supervised learning for image classification. Arxiv 2018. Kolesnikov et al. "Big transfer (bit): General visual representation learning." Arxiv 2019.

The annotation bottleneck

Can we learn "reusable" / "general-purpose" visual representations...

... and use/*transfer* them for other tasks and datasets?


Yes!

- Pretrained models have boosted performance on many tasks
- We can pretrain with large weakly annotated datasets
- Big gains for smaller target datasets

Do we really need labeled datasets for pretraining?

Razavian et al. CNN Features off-the-shelf: an Astounding Baseline for Recognition. CVPRw 2014. Mahajan, et al. "Exploring the limits of weakly supervised pretraining." ECCV 2018. Yalniz et al. Billion-scale semi-supervised learning for image classification. Arxiv 2018. Kolesnikov et al. "Big transfer (bit): General visual representation learning." Arxiv 2019.

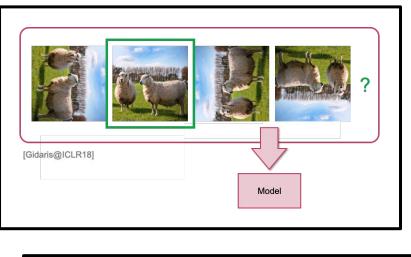
Learning transferable visual representations

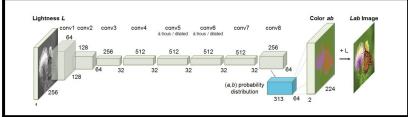
- Train on a proxy task (self-supervised)
 - Not (necessarily) an "important" task we care about
 - A task that is defined from the input data alone
 - Should still be a hard task
 - Should enable us to learn aspects of the visual input/world
- No annotations required
 - Scalability: use "any" image/video no need for labels
 - Flexibility: find the data that fits your downstream task

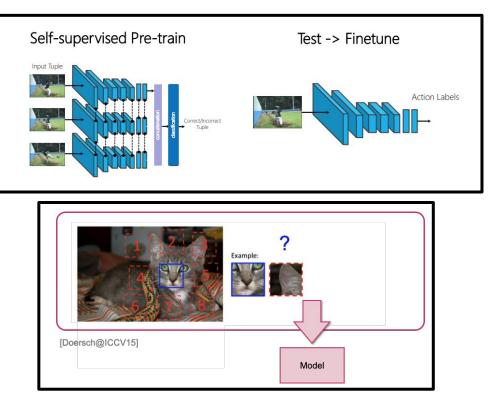
- Train on a proxy task (self-supervised)
 - Not (necessarily) an "important" task we care about
 - A task that is defined from the input data alone
 - Should still be a hard task
 - Should enable us to learn aspects of the visual input/world
- No annotations required
 - Scalability: use "any" image/video no need for labels
 - Flexibility: find the data that fits your downstream task

"Does this mean that I don't need to care about what data I use anymore?"

- Train on a proxy task (self-supervised)
 - Not (necessarily) an "important" task we care about
 - A task that is defined from the input data alone
 - Should still be a hard task
 - Should enable us to learn aspects of the visual input/world
- No annotations required
 - Scalability: use "any" image/video no need for labels
 - Flexibility: find the data that fits your downstream task


"Does this mean that I don't need to care about what data I use anymore?" **Of course not!**


- Train on a proxy task (self-supervised)
 - A task that is defined from the input data alone
 - Should enable us to learn aspects of the visual input/world
 - **Predictive** or **Contrastive** proxy tasks



Source: Ankesh Anand, "Contrastive Self-Supervised Learning" (2020)"

Predictive tasks for self-supervised learning

Misra, Ishan, C. Lawrence Zitnick, and Martial Hebert. Shuffle and learn: unsupervised learning using temporal order verification. ECCV 2016. Gidaris, S., Singh, P., & Komodakis, N. (2018). Unsupervised representation learning by predicting image rotations. ICLR 2018 Doersch, Carl, Abhinav Gupta, and Alexei A. Efros. Unsupervised visual representation learning by context prediction. ICCV. 2015. Zhang, R., Isola, P., & Efros, A. A. Colorful image colorization. ECCV 2016.

Contrastive tasks for self-supervised learning

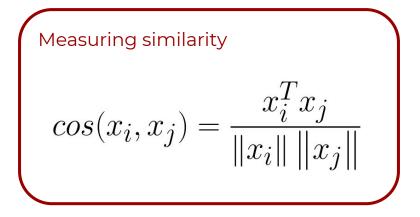
Contrastive

- Contrast features from different (overlapping) patches [CPC]
- Discriminate individual instances [InstDiscr]
- Learning representations invariant to image transformations [MoCo, SimCLR, PIRL, SwAV, BYOL, many more]

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." *arXiv* 2018.
[InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.
[SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.
[PIRL] Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." CVPR 2020.
[SwAV] Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." NeurIPS 2020.
[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurIPS 2020.
[BYOL] Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." NeurIPS 2020.

Contrastive tasks for self-supervised learning

Contrastive



- Contrast features from different (overlapping) patches [CPC]
- Discriminate individual instances [InstDiscr]
- Learning representations invariant to image transformations [MoCo, SimCLR, PIRL, SwAV, BYOL, many more]

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." *arXiv* 2018.
[InstDiscr] 7 Wu. Y Xiong. SX Yu. D Lin. "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.
[SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.
[PIRL] Misra, Ishan, and Laurens van der Maaten. "Self-supervised learning of pretext-invariant representations." CVPR 2020.
[SwAV] Caron, Mathilde, et al. "Unsupervised learning of visual features by contrasting cluster assignments." NeurIPS 2020.
[InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurIPS 2020.
[BYOL] Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-supervised learning." NeurIPS 2020.

Contrastive Learning

- Given a set of "similar" and "dissimilar" pairs of inputs
- Learn the **ranking** of similarities, *i.e.*, learn representations such that the *similarity between "similar" inputs is higher than "dissimilar"*

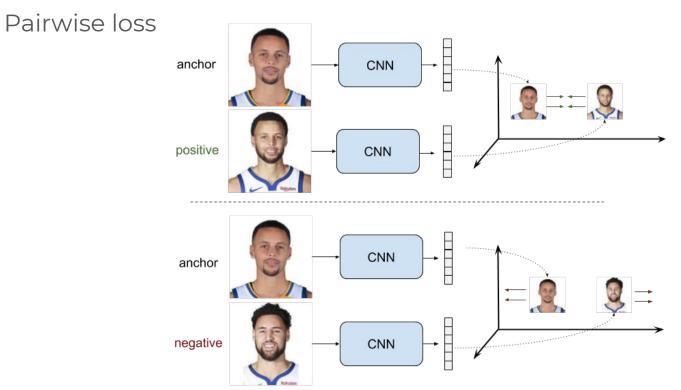


Figure from <u>"Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge Loss and all those confusing names</u>" (2019)

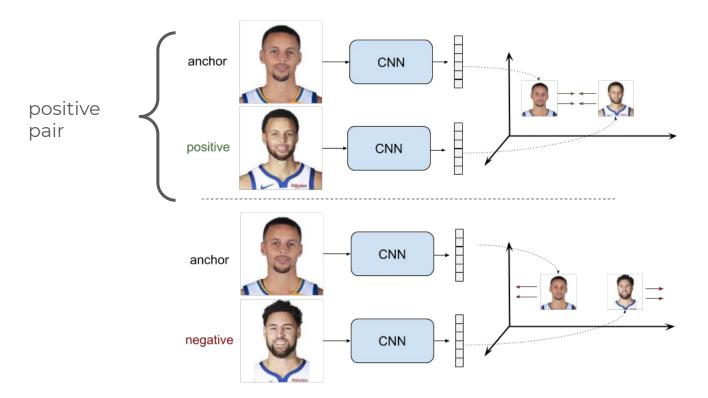


Figure from "Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge Loss and all those confusing names" (2019)

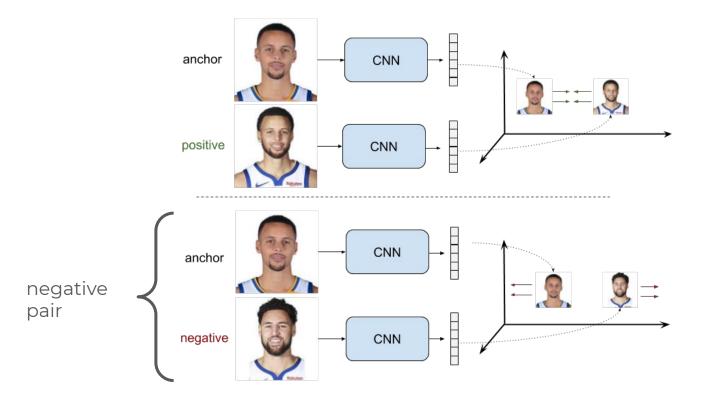


Figure from <u>"Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge Loss and all those confusing names</u>" (2019)

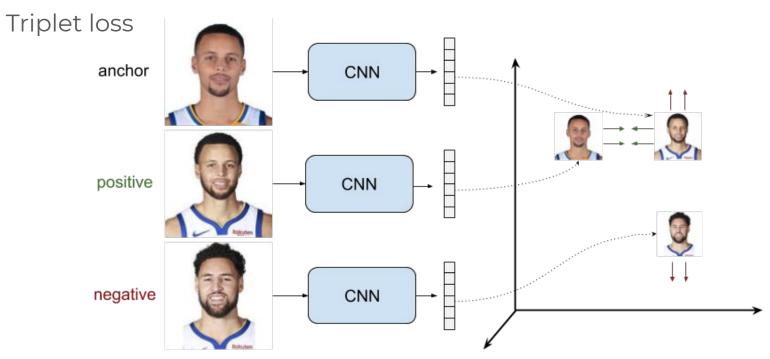


Figure from "Understanding Ranking Loss, Contrastive Loss, Margin Loss, Triplet Loss, Hinge Loss and all those confusing names" (2019)

Contrastive Learning

Why not use **multiple negatives**?

- others from the mini-batch
- or features from a memory

InfoNCE loss [CPC]:

• Learn by contrasting the similarity of the positive pair, with the similarities between the anchor and *a set of* negatives

(we will discuss this in detail soon)

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." arXiv 2018.

Overview

- Introduction
- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- Understanding the feature space

• Contrastive learning, when the similar/positive and dissimilar/negative pairs are defined in a *self-supervised* way "a self-supervised proxy task"

- What is a good proxy task (to define positive/negative pairs)?
 - contrast features from different (overlapping) patches [CPC]
 - discriminate individual instances [InstDiscr]
 - Learning representations invariant to data augmentations

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." *arXiv* 2018. [InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.

• Contrastive learning, when the similar/positive and dissimilar/negative pairs are defined in a *self-supervised* way "a self-supervised proxy task"

- What is a good proxy task (to define positive/negative pairs)?
 - contrast features from different (overlapping) patches [CPC]
 - discriminate individual instances [InstDiscr]
 - Learning representations invariant to image transformations [MoCo, SimCLR, PIRL, SwAV, BYOL, many more]

[CPC] Oord, Aaron van den, Yazhe Li, and Oriol Vinyals. "Representation learning with contrastive predictive coding." *arXiv* 2018. [InstDiscr] Z Wu, Y Xiong, SX Yu, D Lin, "Unsupervised feature learning via non-parametric instance discrimination." CVPR 2018.

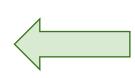
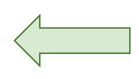
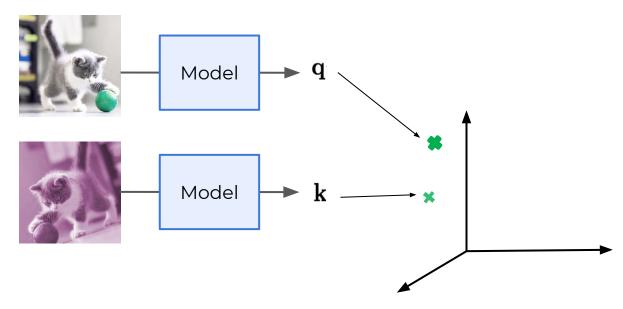
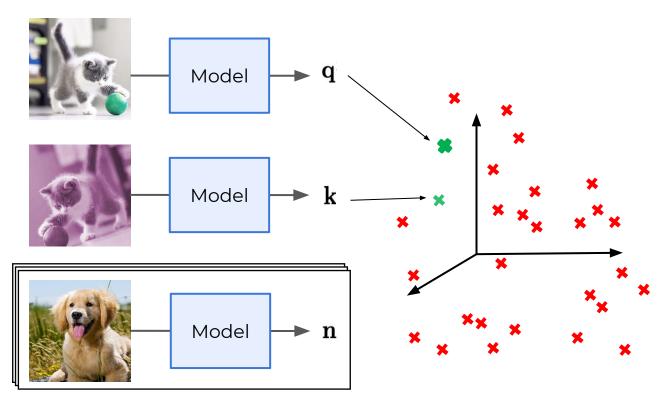
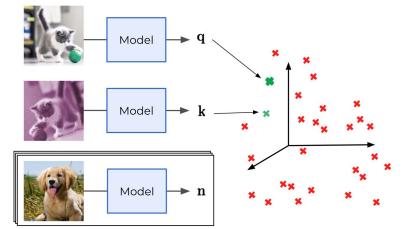





Image Transformations

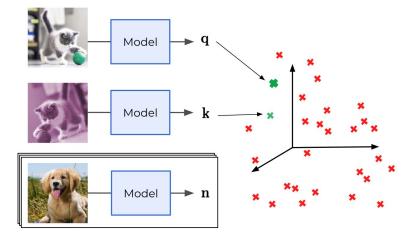


[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

The InfoNCE loss function [CPC]

$$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$$

$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$ Model Model the softmax Cross-Entropy loss $L_{1} = -\log \frac{e^{W_{y_{i}}^{T}x_{i} + b_{y_{i}}}}{\sum_{i=1}^{n} e^{W_{j}^{T}x_{i} + b_{j}}}$ Model n

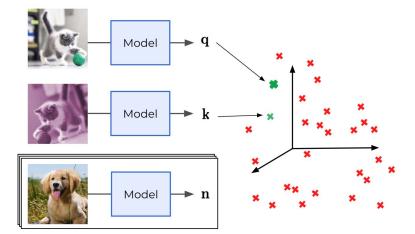

The InfoNCE loss function [CPC]

$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$ Model Model the softmax Cross-Entropy loss $L_1 = -\log \frac{e^{W_j V_j V_j}}{\sum_{i=1}^n e^{W_j^T x_i + b_j}}$ Model n

The InfoNCE loss function [CPC]

$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$ Model Model the softmax Cross-Entropy loss $L_1 = -\log \frac{e^{W_{y_i}} x_i + b_{y_i}}{\sum_{i=1}^{n} e^{W_j^T} x_i + b_j}$ Model n

The InfoNCE loss function [CPC]

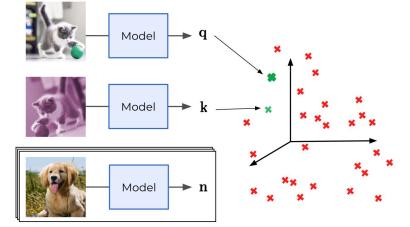

The InfoNCE loss function [CPC]

$$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$$

Has softmax-like properties:

• We are applying a softmax function for each positive/query **q**

[CPC] Oord, Aaron van den, et al. "Representation learning with contrastive predictive coding." *arXiv* 2018. [MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.


The InfoNCE loss function [CPC]

$$\mathcal{L}_{\mathbf{q},\mathbf{k},Q} = -\log rac{\exp(\mathbf{q}^T \mathbf{k}/ au)}{\exp(\mathbf{q}^T \mathbf{k}/ au) + \sum_{\mathbf{n} \in Q} \exp(\mathbf{q}^T \mathbf{n}/ au)},$$

Has softmax-like properties:

 Contributions of positive/negative logits to the loss identical to the ones for a (#neg + 1)-way cross-entropy classification loss with all gradients are scaled by 1 / T

[CPC] Oord, Aaron van den, et al. "Representation learning with contrastive predictive coding." *arXiv* 2018. [MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

Where do negatives come from?

[SimCLR]: same batch

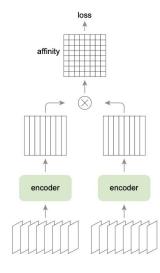
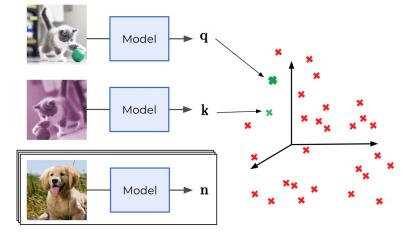



figure from [MoCo-v2]

[SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020. [MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)

Where do negatives come from?

[MoCo]: queue of last batches

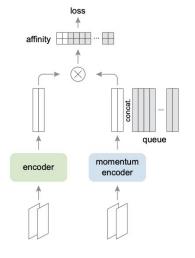
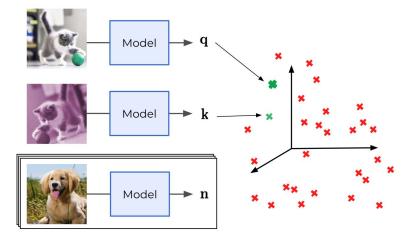
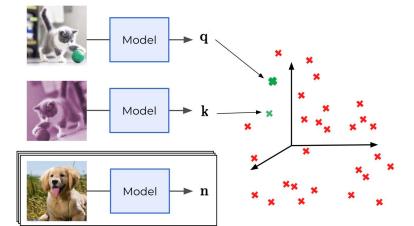



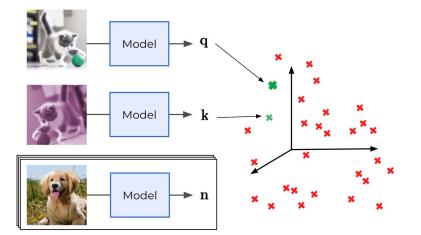
figure from [MoCo-v2]

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020)

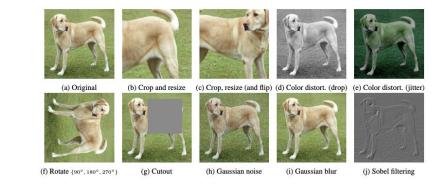


Key observation

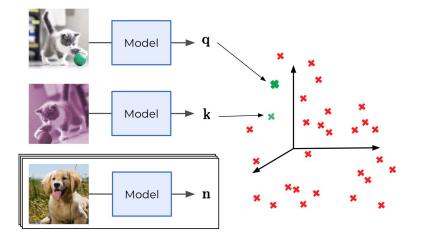
Making the augmentation invariance proxy task more challenging leads to visual representations which generalize better


[MoCo-v2, SimCLR, InfoMin Aug, more]

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020. [MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020) [InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurIPS 2020.


How to make the task harder?

• More challenging positive pairs

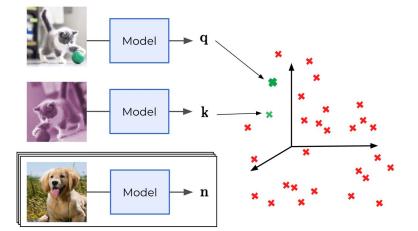

How to make the task harder?

• More challenging positive pairs

[SimCLR]

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020. [MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020) [InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurIPS 2020.

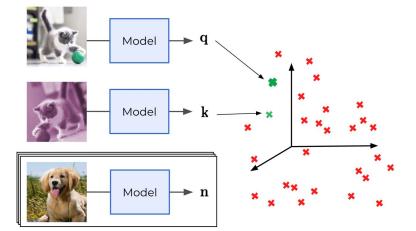
How to make the task harder?


		1 11	•	•, •	•
•	More	challe	naina	positive	nairs
-	11010	crianc		posicive	pans

	Clob	Cutout	Color	So ^{bel} 2nd trans	N ^{oli5^e formatio}		Rotate	Average
Rotate	30.0	22.5	20.7	4.3	9.7	6.5	2.6	13.8
Blur	35.1	25.2	16.6	5.8	9.7	2.6	6.7	14.5
Noise		25.8	7.5	7.6	9.8	9.8	9.6	15.5
Sobel	46.2		20.9	4.0	9.3	6.2	4.2	18.8
Color	55.8	35.5	18.8	21.0	11.4	16.5	20.8	25.7
Cutout	32.2	25.6	33.9		26.5	25.2	22.4	29.4
Crop	33.1	33.9	56.3	46.0	39.9	35.0	30.2	

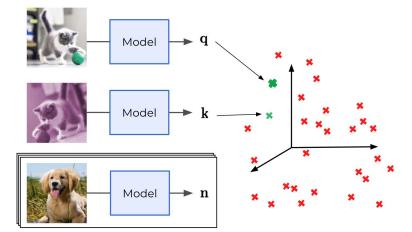
RandomResizedCrop(scale=(0.2, 1.0))
RandomHorizontalFlip()
<pre># CJ(x): random color jitter with x</pre>
cj = ColorJitter([0.8,0.8,0.8,0.4]*x
RandomApply([cj], p=0.8)
Blur: random blurring
blur = Blur(sigma=(0.1,2.0))
RandomApply([blur], p=0.5)
RA: RandAugment
rnd_augment()
RandomGrayscale (p=0.2),

[InfoMin Aug.]


[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020. [MoCo-v2] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020) [InfoMin Aug.] Tian, Yonglong, et al. "What makes for good views for contrastive learning." NeurIPS 2020.

How to make the task harder?

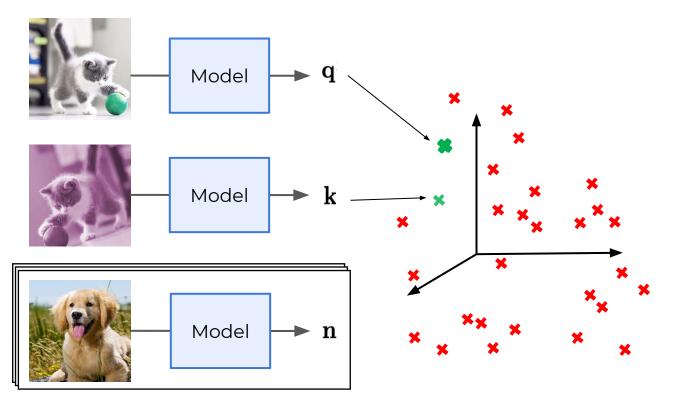
• More challenging positive pairs


[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

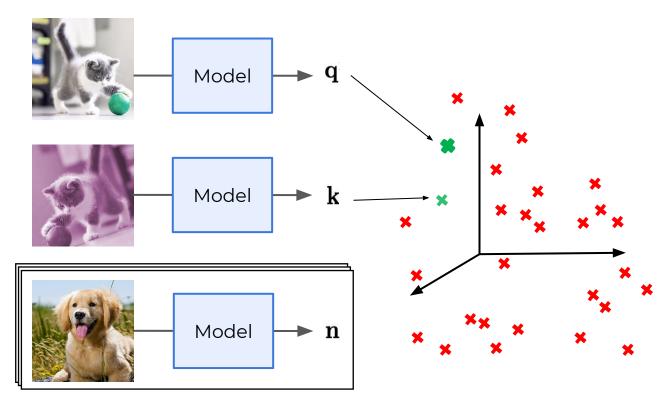
How to make the task harder?

- More challenging positive pairs
- More challenging negative pairs

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

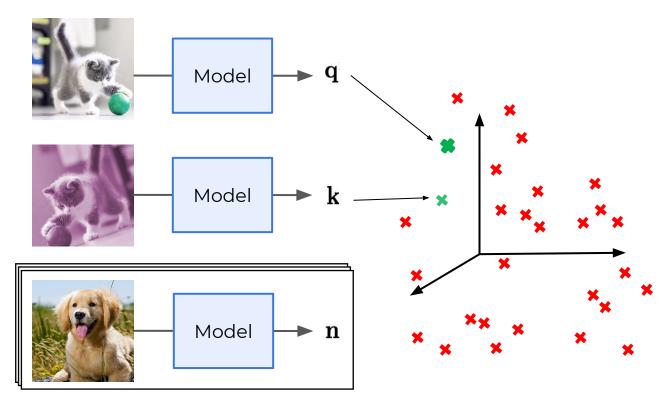


How to make the task harder?

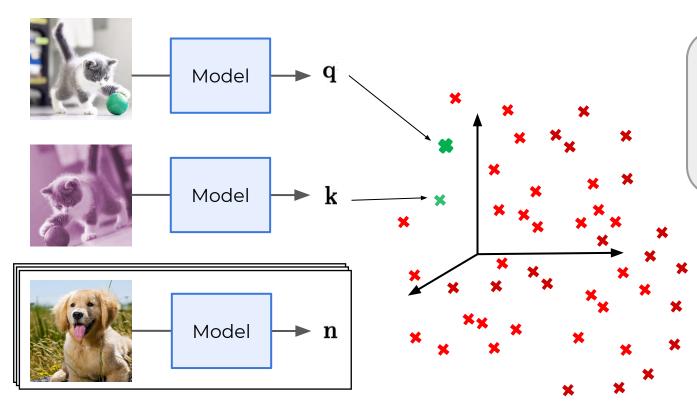

- More challenging positive pairs
- More challenging negative pairs

How to get more challenging negatives?

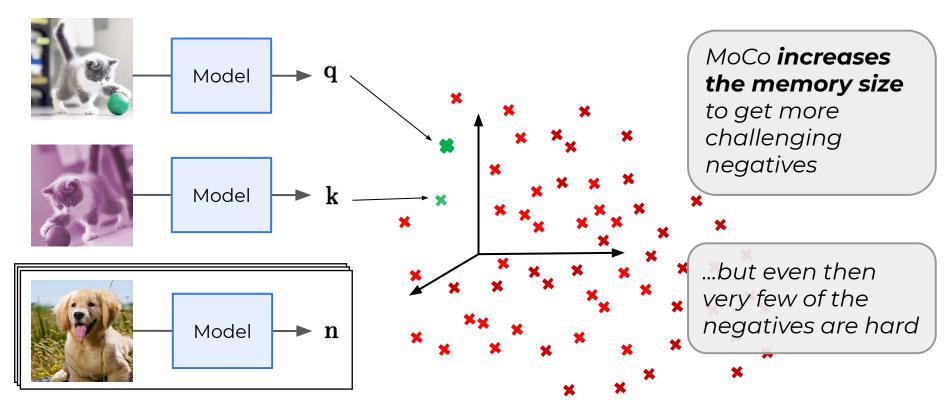
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020. [SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.



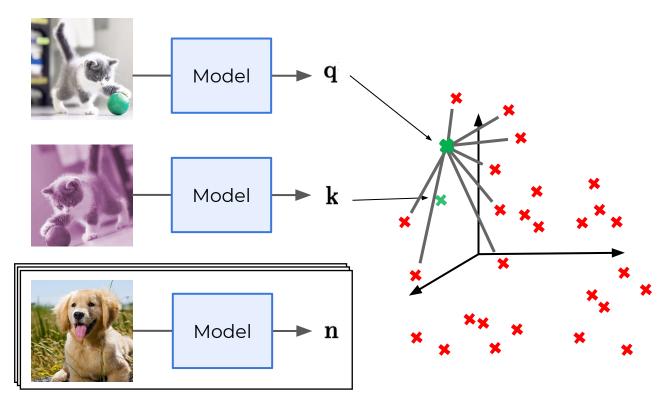
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.


SimCLR **increases the batch size** to get more challenging negatives

[SimCLR] Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML 2020.

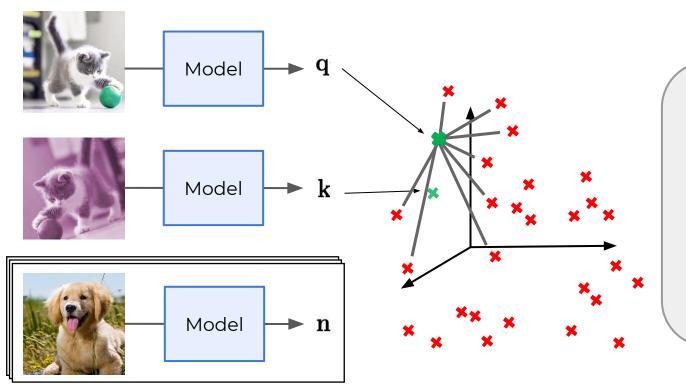

MoCo **increases the memory size** to get more challenging negatives

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.

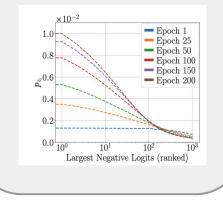


MoCo **increases the memory size** to get more challenging negatives

[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.



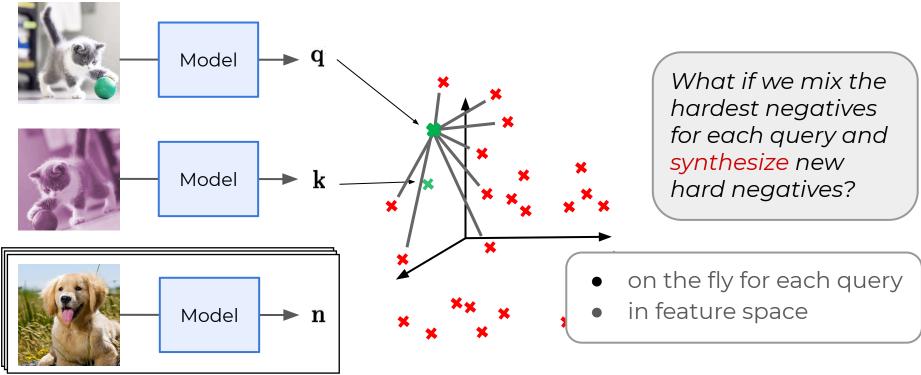
[MoCo] He, Kaiming, et al. "Momentum contrast for unsupervised visual representation learning." CVPR 2020.



MoCo **increases the memory size** to get more challenging negatives

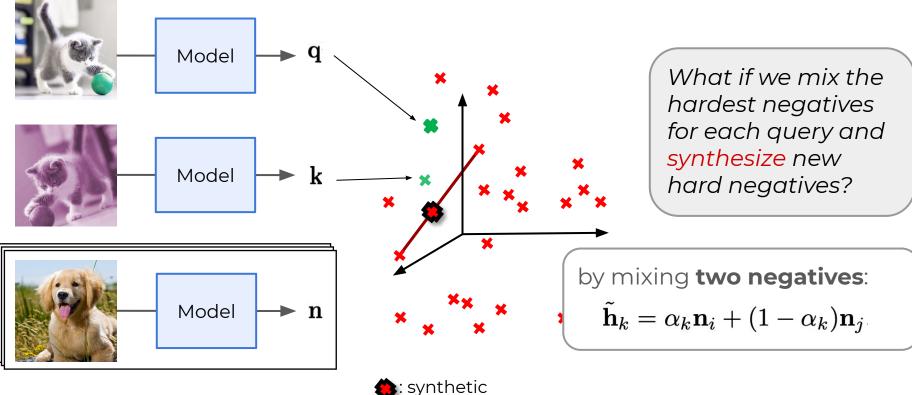
Yet, some hard negatives do exist in memory

How hard are MoCo negatives?

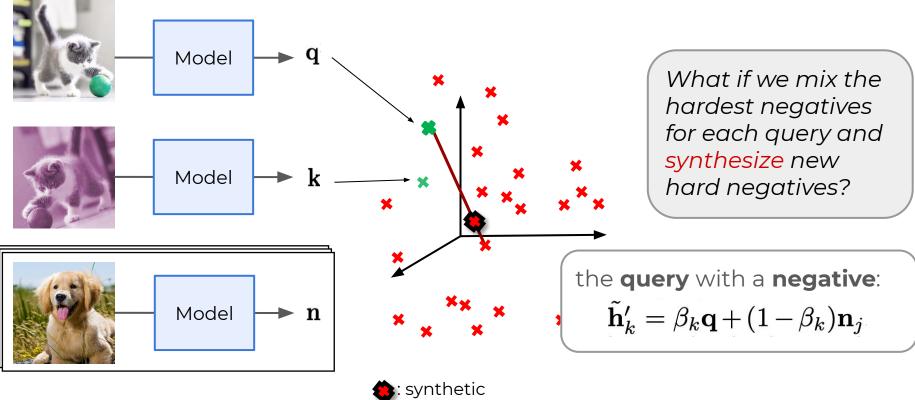


Overview

- Introduction
- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- Understanding the feature space

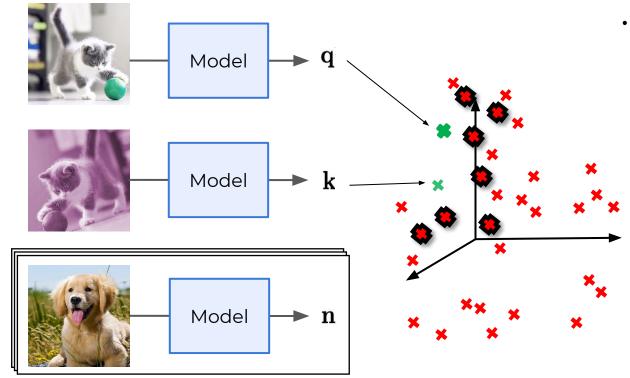

Mixing of Contrastive Hard Negatives

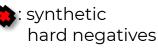
Mixing of Contrastive Hard Negatives



hard negatives

Mixing of Contrastive Hard Negatives




hard negatives

Mixing of Contrastive Hard Negatives ...or MoCHi

What if we mix the hardest negatives for each query and synthesize new hard negatives?

$$\mathbf{h}_k = rac{ ilde{\mathbf{h}}_k}{\| ilde{\mathbf{h}}_k\|_2}, ext{ where } ilde{\mathbf{h}}_k = lpha_k \mathbf{n}_i + (1 - lpha_k) \mathbf{n}_j,$$

- We run MoCHi on top of [MoCo-v2]
 - 2-layer MLP head, cosine learning rate
- MoCHi notation:

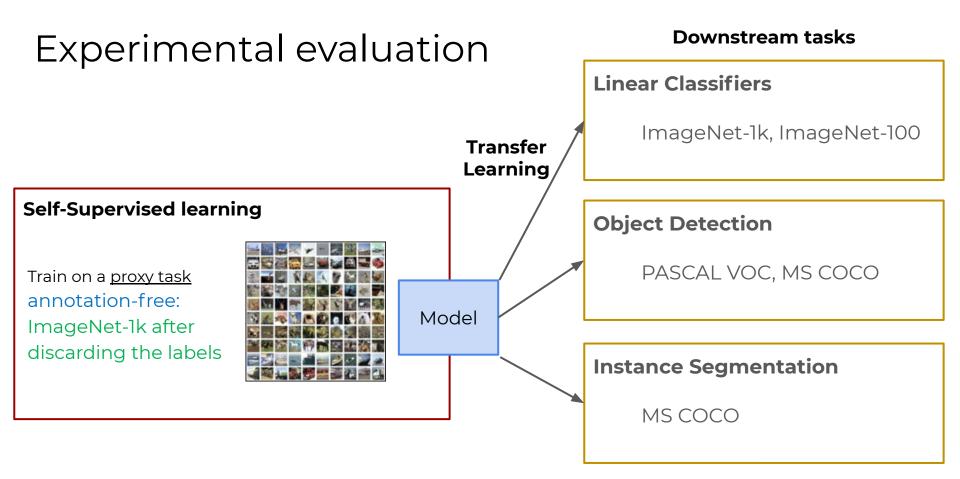
MoCHi (N, s, s')

$$\mathbf{h}_k = rac{ ilde{\mathbf{h}}_k}{\| ilde{\mathbf{h}}_k\|_2}, ext{ where } ilde{\mathbf{h}}_k = lpha_k \mathbf{n}_i + (1 - lpha_k) \mathbf{n}_j,$$

- We run MoCHi on top of [MoCo-v2]
 - 2-layer MLP head, cosine learning rate
- MoCHi notation:

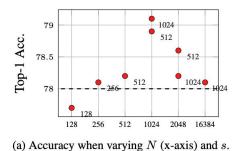
$$\mathbf{h}_k = rac{ ilde{\mathbf{h}}_k}{\| ilde{\mathbf{h}}_k\|_2}, ext{ where } ilde{\mathbf{h}}_k = lpha_k \mathbf{n}_i + (1 - lpha_k) \mathbf{n}_j,$$

- We run MoCHi on top of [MoCo-v2]
 - 2-layer MLP head, cosine learning rate
- MoCHi notation:



$$\mathbf{h}_k = rac{ ilde{\mathbf{h}}_k}{\| ilde{\mathbf{h}}_k\|_2}, ext{ where } ilde{\mathbf{h}}_k = lpha_k \mathbf{n}_i + (1 - lpha_k) \mathbf{n}_j,$$

- We run MoCHi on top of [MoCo-v2]
 - 2-layer MLP head, cosine learning rate
- MoCHi notation:


Overview

- Introduction
- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- Understanding the feature space

Results on ImageNet-100

- MoCHi increases performance for a large number of hyperparameter configurations
 - Varying number of synthetic features
 - Different ways of synthesizing
 - How many of the top negative to use

s'	0	128	256	512
0	0.0	+0.7	+0.9	+1.0
128	+0.8	+0.4	+1.1	+0.3
256	+0.3	+0.7	+0.3	+1.0
512	+0.9	+0.8	+0.6	+0.4
1024	+0.8	+1.0	+0.7	+0.6

(b) Accuracy gains over MoCo-v2 when N = 1024.

Method	Top1 % ($\pm \sigma$)	diff (%)
MoCo [21]	73.4	
MoCo + iMix [36]	74.2 [‡]	0.8
CMC [38]	75.7	
CMC + iMix [36]	75.9 [‡]	0.2
MoCo [21]* ($t = 0.07$)	74.0	
MoCo $[21]^*$ ($t = 0.2$)	75.9	
MoCo-v2 [10]*	$78.0(\pm 0.2)$	
+ MoCHi (1024, 1024, 128)	79.0 (±0.4)	1.0
+ MoCHi (1024, 256, 512)	79.0 (±0.4)	1.0
+ MoCHi (1024, 128, 256)	78.9 (±0.5)	0.9

Linear classification accuracy (ImageNet-100)

Method	IN-1k		VOC 2007					
Wethod	Top1	AP_{50}	AP	AP_{75}				
100 epoch training								
MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)				
+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2				
+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7				
+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9				
	200 e	poch training						
SimCLR [8] (8k batch size, from [10])	66.6							
MoCo + Image Mixture [36]	60.8	76.4						
InstDis [46] [†]	59.5	80.9	55.2	61.2				
MoCo [21]	60.6	81.5	55.9	62.6				
PIRL [31] [†]	61.7	81.0	55.5	61.3				
MoCo-v2 [10]	67.7	82.4	57.0	63.6				
InfoMin Aug. [39]	70.1	82.7	57.6	64.6				
MoCo-v2 [10]*	67.9	82.5 (±0.2)	56.8 (±0.1)	63.3 (±0.4)				
+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5				
+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8				
+ MoCHi (256, 512, 0)	67.7	<u>82.8</u> (±0.2) (<u>0.3</u>)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8				
+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9				
+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	<u>64.4</u> (±0.2) (<u>1.1</u>				
+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	<u>57.5</u> (±0.3) (<u>0.7</u>)	$64.4(\pm 0.4)(1.1)$				
	800 e	poch training						
SvAV [7]	75.3	82.6	56.1	62.7				
MoCo-v2 [10]	71.1	82.5	57.4	64.0				
MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)				
+ MoCHi (128, 1024, 512)	68.7	83.3 (±0.1) (0.6)	57.3 (±0.2) (0.5)	64.2 (±0.4) (0.3)				
Supervised [21]	76.1	81.3	53.5	58.8				

Linear classification on ImageNet:

MoCHi does not show performance gains over MoCo-v2

<u>Possible explanation:</u> biases induced by training with hard negatives on the same dataset as the downstream task

 MoCHi retains state-of-the-art performance for linear classification on ImageNet

Method	IN-1k		VOC 2007	
Wethod	Top1	AP_{50}	AP	AP_{75}
	100 e	r och training		
MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)
+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2
+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7
+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9
	200 e	och training		
SimCLR [8] (8k batch size, from [10])	66.6			
MoCo + Image Mixture [36]	60.8	76.4		
InstDis [46] [†]	59.5	80.9	55.2	61.2
MoCo [21]	60.6	81.5	55.9	62.6
PIRL [31] [†]	61.7	81.0	55.5	61.3
MoCo-v2 [10]	67.7	82.4	57.0	63.6
InfoMin Aug. [39]	70.1	82.7	57.6	64.6
MoCo-v2 [10]*	67.9	$82.5 (\pm 0.2)$	56.8 (±0.1)	63.3 (±0.4)
+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5
+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8
+ MoCHi (256, 512, 0)	67.7	82.8 (±0.2) (<u>0.3</u>)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8)
+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9)
+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	<u>64.4</u> (±0.2) (<u>1.1</u>)
+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	<u>57.5</u> (±0.3) (<u>0.7</u>)	$\underline{64.4}$ (±0.4) (<u>1.1</u>)
	800 e	r och training		
SvAV [7]	75.3	82.6	56.1	62.7
MoCo-v2 [10]	71.1	82.5	57.4	64.0
MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)
+ MoCHi (128, 1024, 512)	68.7	83.3 (±0.1) (0.6)	<u>57.3</u> (±0.2) (<u>0.5</u>)	<u>64.2</u> (± 0.4) (<u>0.3</u>)
Supervised [21]	76.1	81.3	53.5	58.8

Transfer learning performance:

MoCHi helps the model <u>learn faster</u>:

 Strong performance gains on PASCAL VOC when using a model with only 100 epochs of pre-training

	Method	IN-1k		VOC 2007			
		Top1	AP_{50}	AP	AP ₇₅		
e: (100 epoch training						
<u> </u>	MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)		
	+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2)		
	+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7)		
<u>aster</u> :	+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9)		
		200 e	poch training				
	SimCLR [8] (8k batch size, from [10])	66.6	8				
son	MoCo + Image Mixture [36]	60.8	76.4				
2	InstDis [46] [†]	59.5	80.9	55.2	61.2		
а	MoCo [21]	60.6	81.5	55.9	62.6		
hs of	PIRL [31] [†]	61.7	81.0	55.5	61.3		
15 01	MoCo-v2 [10]	67.7	82.4	57.0	63.6		
	InfoMin Aug. [39]	70.1	82.7	57.6	64.6		
	MoCo-v2 [10]*	67.9	82.5 (±0.2)	56.8 (±0.1)	63.3 (±0.4)		
	+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5)		
	+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8)		
	+ MoCHi (256, 512, 0)	67.7	<u>82.8</u> (±0.2) (<u>0.3</u>)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8)		
	+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9)		
	+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	$64.4(\pm 0.2)(1.1)$		
	+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	$57.5(\pm 0.3)(0.7)$	$64.4(\pm 0.4)(1.1)$		
		800 e	poch training				
	SvAV [7]	75.3	82.6	56.1	62.7		
	MoCo-v2 [10]	71.1	82.5	57.4	64.0		
	MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)		
	+ MoCHi (128, 1024, 512)	68.7	$\underline{83.3}_{(\pm 0.1)}(0.6)$	<u>57.3</u> (±0.2) (<u>0.5</u>)	<u>64.2</u> (± 0.4) (<u>0.3</u>)		
	Supervised [21]	76.1	81.3	53.5	58.8		

Transfer learning performance:

- MoCHi after 200 epochs performs similar to MoCo-v2 after 800 epochs
- Performance gains are consistent across multiple hyperparameter configurations

Method	IN-1k		VOC 2007	
Memod	Top1	AP_{50}	AP	AP_{75}
	100 e	poch training		
MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)
+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2)
+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7)
+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9)
	200 e	poch training		
SimCLR [8] (8k batch size, from [10])	66.6			
MoCo + Image Mixture [36]	60.8	76.4		
InstDis [46] [†]	59.5	80.9	55.2	61.2
MoCo [21]	60.6	81.5	55.9	62.6
PIRL [31] [†]	61.7	81.0	55.5	61.3
MoCo-v2 [10]	67.7	82.4	57.0	63.6
InfoMin Aug. [39]	70.1	82.7	57.6	64.6
MoCo-v2 [10]*	67.9	82.5 (±0.2)	56.8 (±0.1)	63.3 (±0.4)
+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5)
+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8)
+ MoCHi (256, 512, 0)	67.7	82.8 (±0.2) (0.3)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8)
+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9)
+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	$64.4(\pm 0.2)(1.1)$
+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	<u>57.5</u> (±0.3) (<u>0.7</u>)	$\underline{64.4}$ (±0.4) (<u>1.1</u>)
	800 e	poch training		
SvAV [7]	75.3	82.6	56.1	62.7
MoCo-v2 [10]	71.1	82.5	57.4	64.0
MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)
+ MoCHi (128, 1024, 512)	68.7	83.3 (±0.1) (0.6)	<u>57.3</u> (±0.2) (<u>0.5</u>)	<u>64.2</u> (± 0.4) (<u>0.3</u>)
Supervised [21]	76.1	81.3	53.5	58.8

Transfer learning performance:

 Gains persist after longer training (800 epochs)

Method	IN-1k		VOC 2007	
Wellind	Top1	AP_{50}	AP	AP_{75}
	100 e	poch training		
MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)
+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2)
+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7)
+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9)
	200 e	poch training		
SimCLR [8] (8k batch size, from [10])	66.6			
MoCo + Image Mixture [36]	60.8	76.4		
InstDis [46] [†]	59.5	80.9	55.2	61.2
MoCo [21]	60.6	81.5	55.9	62.6
PIRL [31] [†]	61.7	81.0	55.5	61.3
MoCo-v2 [10]	67.7	82.4	57.0	63.6
InfoMin Aug. [39]	70.1	82.7	57.6	64.6
MoCo-v2 [10]*	67.9	82.5 (±0.2)	56.8 (±0.1)	63.3 (±0.4)
+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5)
+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8)
+ MoCHi (256, 512, 0)	67.7	82.8 (±0.2) (0.3)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8)
+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9)
+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	$64.4(\pm 0.2)(1.1)$
+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	<u>57.5</u> (±0.3) (<u>0.7</u>)	$\underline{64.4}$ (±0.4) (<u>1.1</u>)
	800 ø	poch training		
SvAV [7]	75.3	82.6	56.1	62.7
MoCo-v2 [10]	71.1	82.5	57.4	64.0
MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)
+ MoCHi (128, 1024, 512)	68.7	$\underline{83.3}_{(\pm 0.1)}(0.6)$	<u>57.3</u> (±0.2) (<u>0.5</u>)	<u>64.2</u> (±0.4) (<u>0.3</u>)
Supervised [21]	76.1	81.3	53.5	58.8

Transfer learning performance:

 Gains persist after longer training (800 epochs)

 Large gains (<u>4% AP</u>) for self-supervised pre-training versus the "traditional" (supervised) ImageNet

Method	IN-1k		VOC 2007				
Method	Top1	AP_{50}	AP	AP_{75}			
100 epoch training							
MoCo-v2 [10]*	63.6	80.8 (±0.2)	53.7 (±0.2)	59.1 (±0.3)			
+ MoCHi (256, 512, 0)	63.9	81.1 (±0.1) (0.4)	54.3 (±0.3) (0.7)	60.2 (±0.1) (1.2			
+ MoCHi (256, 512, 256)	63.7	81.3 (±0.1) (0.6)	54.6 (±0.3) (1.0)	60.7 (±0.8) (1.7			
+ MoCHi (128, 1024, 512)	63.4	81.1 (±0.1) (0.4)	54.7 (±0.3) (1.1)	60.9 (±0.1) (1.9			
	200 e	poch training					
SimCLR [8] (8k batch size, from [10])	66.6						
MoCo + Image Mixture [36]	60.8	76.4					
InstDis [46] [†]	59.5	80.9	55.2	61.2			
MoCo [21]	60.6	81.5	55.9	62.6			
PIRL [31] [†]	61.7	81.0	55.5	61.3			
MoCo-v2 [10]	67.7	82.4	57.0	63.6			
InfoMin Aug. [39]	70.1	82.7	57.6	64.6			
MoCo-v2 [10]*	67.9	82.5 (±0.2)	56.8 (±0.1)	63.3 (±0.4)			
+ MoCHi (1024, 512, 256)	68.0	82.3 (±0.2) (0.2)	56.7 (±0.2) (0.1)	63.8 (±0.2) (0.5			
+ MoCHi (512, 1024, 512)	67.6	82.7 (±0.1) (0.2)	57.1 (±0.1) (0.3)	64.1 (±0.3) (0.8			
+ MoCHi (256, 512, 0)	67.7	<u>82.8</u> (±0.2) (<u>0.3</u>)	57.3 (±0.2) (0.5)	64.1 (±0.1) (0.8			
+ MoCHi (256, 512, 256)	67.6	82.6 (±0.2) (0.1)	57.2 (±0.3) (0.4)	64.2 (±0.5) (0.9			
+ MoCHi (256, 2048, 2048)	67.0	82.5 (±0.1) (0.0)	57.1 (±0.2) (0.3)	<u>64.4</u> (±0.2) (<u>1.1</u>			
+ MoCHi (128, 1024, 512)	66.9	82.7 (±0.2) (0.2)	<u>57.5</u> (±0.3) (<u>0.7</u>)	<u>64.4</u> (±0.4) (<u>1.1</u>			
	800 e	poch training					
SvAV [7]	75.3	82.6	56.1	62.7			
MoCo-v2 [10]	71.1	82.5	57.4	64.0			
MoCo-v2[10]*	69.0	82.7 (±0.1)	56.8 (±0.2)	63.9 (±0.7)			
+ MoCHi (128, 1024, 512)	68.7	$\underline{83.3}_{(\pm 0.1)}(0.6)$	<u>57.3</u> (±0.2) (<u>0.5</u>)	<u>64.2</u> (± 0.4) (<u>0.3</u>)			
Supervised [21]	76.1	81.3	53.5	58.8			

Results on COCO

	Object Detection			Instance Segmentation				
Pre-train	$ AP^{bb}$	AP_{50}^{bb}	AP_{75}^{bb}	AP^{mk}	AP^{mk}_{50}	$\operatorname{AP}_{75}^{mk}$		
Supervised [13]	38.2	58.2	41.6	33.3	54.7	35.2		
	100 epoch pre-training							
MoCo-v2 [6] + MoCHi (256, 512, 0) + MoCHi (128, 1024, 512)	$ \begin{vmatrix} 37.0 & (\pm 0.1) \\ 37.5 & (\pm 0.1) & (\uparrow 0.5) \\ 37.8 & (\pm 0.1) & (\uparrow 0.8) \end{vmatrix} $	$\begin{array}{l} 56.5 \ (\pm 0.3) \\ 57.0 \ (\pm 0.1) \ (\uparrow 0.5) \\ \textbf{57.2} \ (\pm 0.0) \ (\uparrow \textbf{0.7}) \end{array}$	$\begin{array}{l} \textbf{39.8} (\pm 0.1) \\ \textbf{40.5} (\pm 0.2) (\uparrow \textbf{0.7}) \\ \textbf{40.8} (\pm 0.2) (\uparrow \textbf{1.0}) \end{array}$		$\begin{array}{c} 53.3 \ (\pm 0.2) \\ 53.9 \ (\pm 0.2) \ (\uparrow 0.6) \\ 54.0 \ (\pm 0.2) \ (\uparrow 0.7) \end{array}$	$\begin{array}{l} 34.3 \ (\pm 0.1) \\ 34.9 \ (\pm 0.1) \ (\uparrow 0.6) \\ 35.4 \ (\pm 0.1) \ (\uparrow 1.1) \end{array}$		
	200 epoch pre-training							
MoCo [13] MoCo (1B image train) [13] InfoMin Aug. [28]	38.5 39.1 39.0	58.3 58.7 58.5	41.6 42.2 42.0	33.6 34.1 34.1	54.8 55.4 55.2	35.6 36.4 36.3		
MoCo-v2 [6] + MoCHi (256, 512, 0) + MoCHi (128, 1024, 512) + MoCHi (512, 1024, 512)	$ \begin{vmatrix} 39.0 (\pm 0.1) \\ 39.2 (\pm 0.1) (\uparrow 0.2) \\ 39.2 (\pm 0.1) (\uparrow 0.2) \\ 39.4 (\pm 0.1) (\uparrow 0.4) \end{vmatrix} $	$\begin{array}{c} 58.6 \ (\pm 0.1) \\ 58.8 \ (\pm 0.1) \ (\uparrow 0.2) \\ 58.9 \ (\pm 0.2) \ (\uparrow 0.3) \\ \textbf{59.0} \ (\pm 0.1) \ (\uparrow \textbf{0.4}) \end{array}$	$\begin{array}{c} 41.9_{(\pm0.3)} \\ 42.4_{(\pm0.2)} (\uparrow 0.5) \\ 42.4_{(\pm0.3)} (\uparrow 0.5) \\ 42.7_{(\pm0.1)} (\uparrow 0.8) \end{array}$	$ \begin{vmatrix} 34.2 & (\pm 0.1) \\ 34.4 & (\pm 0.1) & (\uparrow 0.2) \\ 34.3 & (\pm 0.1) & (\uparrow 0.2) \\ \textbf{34.5} & (\pm 0.0) & (\uparrow \textbf{0.3}) \end{vmatrix} $	$\begin{array}{c} 55.4 \ (\pm 0.1) \\ 55.6 \ (\pm 0.1) \ (\uparrow 0.2) \\ 55.5 \ (\pm 0.1) \ (\uparrow 0.1) \\ 55.7 \ (\pm 0.2) \ (\uparrow 0.3) \end{array}$	$\begin{array}{c} 36.2 \ (\pm 0.2) \\ 36.7 \ (\pm 0.1) \ (\uparrow 0.5) \\ 36.6 \ (\pm 0.1) \ (\uparrow 0.4) \\ \textbf{36.7} \ (\pm 0.1) \ (\uparrow \textbf{0.5}) \end{array}$		

Gains also consistent on COCO:

• Instance segmentation: Match supervised pre-training perf. after 100 epochs

Results on COCO

	Object Detection			Instance Segmentation				
Pre-train	$ AP^{bb}$	AP_{50}^{bb}	AP_{75}^{bb}	$ $ AP mk	AP^{mk}_{50}	\mathbf{AP}_{75}^{mk}		
Supervised [13]	38.2	58.2	41.6	33.3	54.7	35.2		
	100 epoch pre-training							
MoCo-v2 [6] + MoCHi (256, 512, 0) + MoCHi (128, 1024, 512)	$ \begin{vmatrix} 37.0 & (\pm 0.1) \\ 37.5 & (\pm 0.1) & (\uparrow 0.5) \\ 37.8 & (\pm 0.1) & (\uparrow 0.8) \end{vmatrix} $	$\begin{array}{l} 56.5 \ (\pm 0.3) \\ 57.0 \ (\pm 0.1) \ (\uparrow 0.5) \\ 57.2 \ (\pm 0.0) \ (\uparrow 0.7) \end{array}$	$\begin{array}{l} \textbf{39.8} (\pm 0.1) \\ \textbf{40.5} (\pm 0.2) (\uparrow \textbf{0.7}) \\ \textbf{40.8} (\pm 0.2) (\uparrow \textbf{1.0}) \end{array}$	$ \begin{vmatrix} 32.7 & (\pm 0.1) \\ 33.0 & (\pm 0.1) & (\uparrow 0.3) \\ 33.2 & (\pm 0.0) & (\uparrow 0.5) \end{vmatrix} $	$\begin{array}{c} 53.3 \ (\pm 0.2) \\ 53.9 \ (\pm 0.2) \ (\uparrow 0.6) \\ 54.0 \ (\pm 0.2) \ (\uparrow 0.7) \end{array}$	$\begin{array}{l} \textbf{34.3} \scriptstyle (\pm 0.1) \\ \textbf{34.9} \scriptstyle (\pm 0.1) \scriptstyle (\uparrow \textbf{0.6}) \\ \textbf{35.4} \scriptstyle (\pm 0.1) \scriptstyle (\uparrow \textbf{1.1}) \end{array}$		
	200 epoch pre-training							
MoCo [13] MoCo (1B image train) [13] InfoMin Aug. [28]	38.5 39.1 39.0	58.3 58.7 58.5	41.6 42.2 42.0	33.6 34.1 34.1	54.8 55.4 55.2	35.6 36.4 36.3		
MoCo-v2 [6] + MoCHi (256, 512, 0) + MoCHi (128, 1024, 512) + MoCHi (512, 1024, 512)	$\begin{vmatrix} 39.0 (\pm 0.1) \\ 39.2 (\pm 0.1) (\uparrow 0.2) \\ 39.2 (\pm 0.1) (\uparrow 0.2) \end{vmatrix}$	58.6 (±0.1) 58.8 (±0.1) (↑0.2) 58.9 (±0.2) (↑0.3)	$\begin{array}{c} 41.9_{(\pm 0.3)}\\ 42.4_{(\pm 0.2)}(\uparrow 0.5)\\ 42.4_{(\pm 0.3)}(\uparrow 0.5)\\ \textbf{42.7}_{(\pm 0.1)}(\uparrow \textbf{0.8})\end{array}$	$ \begin{vmatrix} 34.2 & (\pm 0.1) \\ 34.4 & (\pm 0.1) & (\uparrow 0.2) \\ 34.3 & (\pm 0.1) & (\uparrow 0.2) \\ 34.5 & (\pm 0.0) & (\uparrow 0.3) \end{vmatrix} $	55.4 (±0.1) 55.6 (±0.1) (↑0.2) 55.5 (±0.1) (↑0.1) 55.7 (±0.2) (↑0.3)	36.2 (±0.2) 36.7 (±0.1) (↑0.5) 36.6 (±0.1) (↑0.4) 36.7 (±0.1) (↑0.5)		

Gains also consistent on COCO:

- Instance segmentation: Match supervised pre-training perf. after 100 epochs
- Outperform the recent SoTA [InfoMin Aug] (better positives)

Results summary

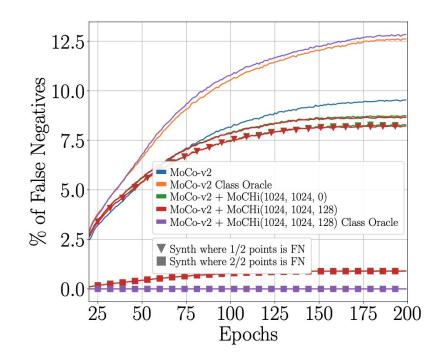
- Linear classification on ImageNet
 - Retains [MoCo-v2]'s SoTA performance
 - MoCHi does not increase, maybe slightly hurts performance
- Transfer learning to other tasks (after fine-tuning)
 - Gains and SoTA performance on PASCAL VOC/COCO
- Faster learning
 - +1% AP over MoCo-v2 on PASCAL VOC when pre-training for 100 epochs
 - Match supervised pre-training performance after 100 epochs on COCO

Results summary

- Linear classification on ImageNet
 - Retains [MoCo-v2]'s SoTA performance
 - MoCHi does not increase, maybe slightly hurts performance
- Transfer learning to other tasks (after fine-tuning)
 - Gains and SoTA performance on PASCAL VOC/COCO
- Faster learning
 - +1% AP over MoCo-v2 on PASCAL VOC when pre-training for 100 epochs
 - Match supervised pre-training performance after 100 epochs on COCO

Can we better understand why MoCHi doesn't help with linear classification but performs better for downstream tasks?

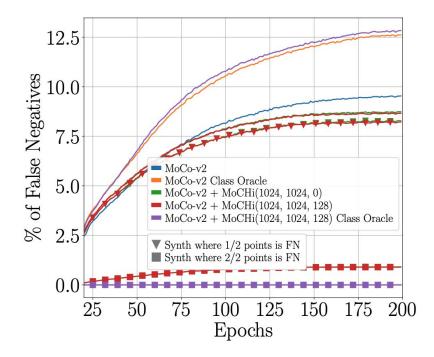
Overview


- Introduction
- Contrastive self-supervised learning
- Hard Negative Mixing (MoCHi 🕰)
- Evaluation and results
- <u>Understanding the feature space</u>

Analysis using a class label "oracle"

False Negatives (FN): Use ImageNet labels to measure memory/negative items that are:

- from the same class as the **q**
- Highly rank wrt logits, *i.e.* in the top-1024 highest logits for **q**

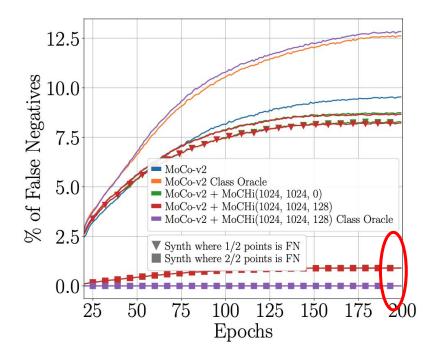


False Negatives (FN) are the negatives that are:

- From the same class as the query
- Highly ranked wrt their similarity to the query

Let's first look at the synthetic points:

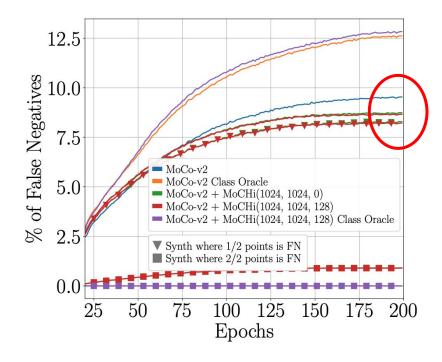
• How many of the synthetic points are (definitely) false negatives?



False Negatives (FN) are the negatives that are:

- From the same class as the query
- Highly ranked wrt their similarity to the query

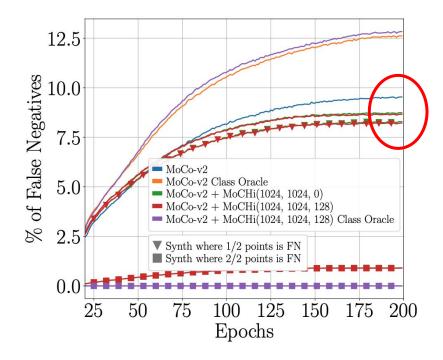
Let's first look at the synthetic points:


- How many of the synthetic points are (definitely) false negatives?
- Only a small percentage of the points synthesized with MoCHi are definitely FN

False Negatives (FN) are the negatives that are:

- From the same class as the query
- Highly ranked wrt their similarity to the query

But how about the "real" negatives?

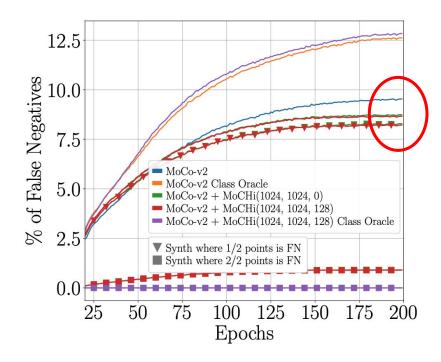


False Negatives (FN) are the negatives that are:

- From the same class as the query
- Highly ranked wrt their similarity to the query

But how about the "real" negatives?

- **FN** in the top-k increase with training
- desirable (we are learning a space where features from the same class are closer together)

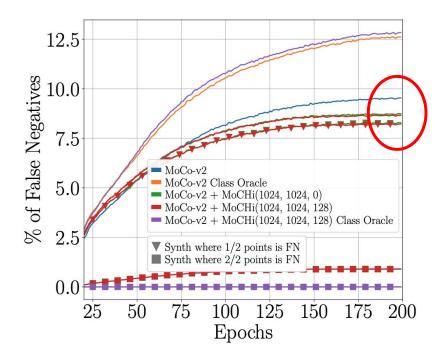


False Negatives (FN) are the negatives that are:

- From the same class as the query
- Highly ranked wrt their similarity to the query

But how about the "real" negatives?

• MoCHi has overall a smaller percentage of false negatives!


False Negatives (FN) are the negatives that are:

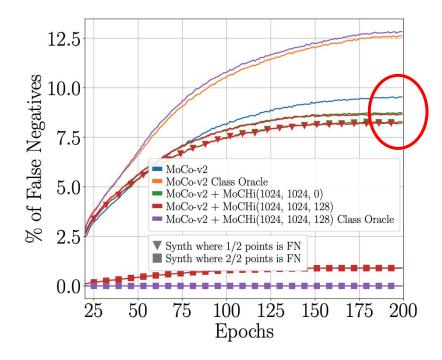
- From the same class as the query
- Highly ranked wrt their similarity to the query

But how about the "real" negatives?

• MoCHi has overall a smaller percentage of false negatives!

... i.e. MoCo does a better job at bringing embeddings from the same class (in the training set) closer together

False Negatives (FN) are the negatives that are:

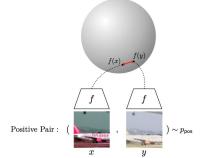

- From the same class as the query
- Highly ranked wrt their similarity to the query

But how about the "real" negatives?

• MoCHi has overall a smaller percentage of false negatives!

... i.e. MoCo does a better job at bringing embeddings from the same class (in the training set) closer together

Why does MoCHi perform better for downstream tasks?


Uniformity and alignment scores [Wang & Isola]

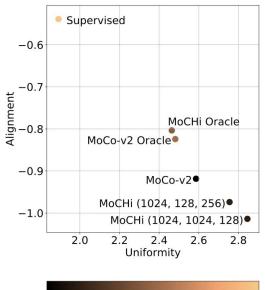
Alignment

• Average distance between representations with the same class

Uniformity

• Average pairwise distance between all embeddings

Alignment: Similar samples have similar features.

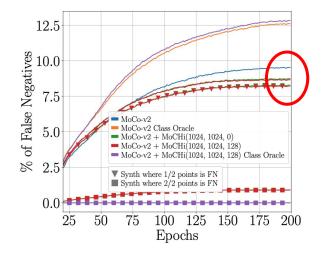

Uniformity: Preserve maximal information.

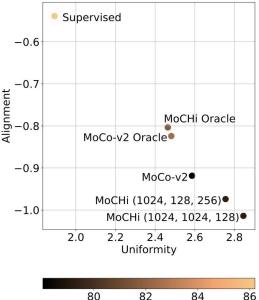
[Wang & Isola] Wang, Tongzhou, and Phillip Isola. "Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere." ICML 2020.

Uniformity and alignment scores [Wang & Isola]

Alignment

Supervised > MoCo > MoCHi

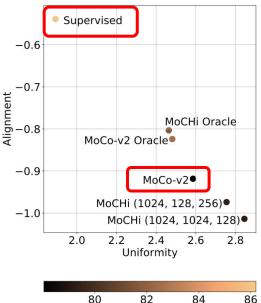

80 82 84 86 Top1 Accuracy


Uniformity and alignment scores [Wang & Isola]

Alignment

Supervised > MoCo > MoCHi

This result confirms the plot

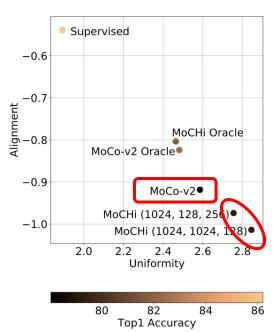


Top1 Accuracy

Uniformity

Utilization of the embedding space

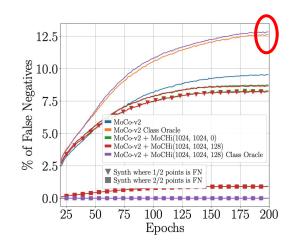
• Contrastive SSL (<u>MoCo</u>) utilizes the embedding space "more" than training with Cross Entropy (<u>supervised</u>)

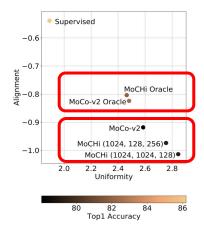


Top1 Accuracy

Uniformity

Utilization of the embedding space

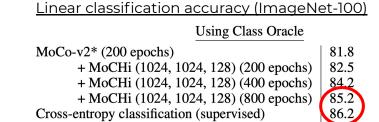

- Contrastive SSL (<u>MoCo</u>) utilizes the embedding space "more" than training with Cross Entropy (<u>supervised</u>)
- Adding synthetic hard negative (<u>MoCHi</u>) results in utilizing the space even more!

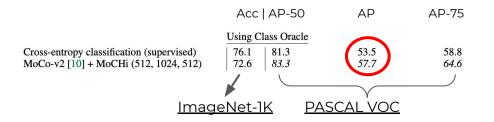


"Oracle" runs

What if we didn't have **FN**?

- Upper bound: simply <u>discard</u> images with the same label as the query from the negatives
- Oracle runs show:
 - higher percentage of FN
 - higher alignment score





"Oracle" runs

What if we didn't have **FN**?

- Upper bound: simply <u>discard</u> images with the same label as the query from the negatives
- Oracle runs show:
 - higher percentage of FN
 - higher alignment score
- Performance:
 - Closing the gap with supervised

Take home message

- A more challenging proxy task
- Consistent gains over a state-of-the-art method [MoCo-v2]
- Faster learning
 - +1% AP over MoCo-v2 on PASCAL VOC when pre-training for 100 epochs
 - Match supervised pre-training performance after 100 epochs on COCO
- Better utilization of the embedding space
 - Measured via the Uniformity metric [Wang and Isola]
- Project page with pre-trained models:

https://europe.naverlabs.com/mochi

https://europe.naverlabs.com/mochi